Spelling suggestions: "subject:"wikification"" "subject:"pinkification""
1 |
A wikification prediction model based on the combination of latent, dyadic and monadic features / Um modelo de previsão para Wikification baseado na combinação de atributos latentes, diádicos e monádicosFerreira, Raoni Simões 25 April 2016 (has links)
Most of the reference information, nowadays, is found in repositories of documents semantically linked, created in a collaborative fashion and freely available in the web. Among the many problems faced by content providers in these repositories, one of the most important is Wikification, that is, the placement of links in the articles. These links have to support user navigation and should provide a deeper semantic interpretation of the content. Wikification is a hard task since the continuous growth of such repositories makes it increasingly demanding for editors. As consequence, they have their focus shifted from content creation, which should be their main objective. This has motivated the design of automatic Wikification tools which, traditionally, address two distinct problems: (a) how to identify which words (or phrases) in an article should be selected as anchors and (b) how to determine to which article the link, associated with the anchor, should point. Most of the methods in literature that address these problems are based on machine learning approaches which attempt to capture, through statistical features, characteristics of the concepts and its associations. Although these strategies handle the repository as a graph of concepts, normally they take limited advantage of the topological structure of this graph, as they describe it by means of human-engineered link statistical features. Despite the effectiveness of these machine learning methods, better models should take full advantage of the information topology if they describe it by means of data-oriented approaches such as matrix factorization. This indeed has been successfully done in other domains, such as movie recommendation. In this work, we fill this gap, proposing a wikification prediction model that combines the strengths of traditional predictors based on statistical features with a latent component which models the concept graph topology by means of matrix factorization. By comparing our model with a state-of-the-art wikification method, using a sample of Wikipedia articles, we obtained a gain up to 13% in F1 metric. We also provide a comprehensive analysis of the model performance showing the importance of the latent predictor component and the attributes derived from the associations between the concepts. The study still includes the analysis of the impact of ambiguous concepts, which allows us to conclude the model is resilient to ambiguity, even though does not include any explicitly disambiguation phase. We finally study the impact of selecting training samples from specific content quality classes, an information that is available in some respositories, such as Wikipedia. We empirically shown that the quality of the training samples impact on precision and overlinking, when comparing training performed using random quality samples versus high quality samples. / Atualmente, informações de referência são disponibilizadas através de repositórios de documentos semanticamente ligados, criados de forma colaborativa e com acesso livre na Web. Entre os muitos problemas enfrentados pelos provedores de conteúdo desses repositórios, destaca-se a Wikification, isto é, a inclusão de links nos artigos desses repositórios. Esses links possibilitam a navegação pelos artigos e permitem ao usuário um aprofundamento semântico do conteúdo. A Wikification é uma tarefa complexa, uma vez que o crescimento contínuo de tais repositórios resulta em um esforço cada vez maior dos editores. Como consequência, eles têm seu foco desviado da criação de conteúdo, que deveria ser o seu principal objetivo. Isso tem motivado o desenvolvimento de ferramentas de Wikification automática que, tradicionalmente, abordam dois problemas distintos: (a) como identificar que palavras (ou frases) em um artigo deveriam ser selecionados como texto de âncora e (b) como determinar para que artigos o link, associado ao texto de âncora, deveria apontar. A maioria dos métodos na literatura que abordam esses problemas usam aprendizado de máquina. Eles tentam capturar, através de atributos estatísticos, características dos conceitos e seus links. Embora essas estratégias tratam o repositório como um grafo de conceitos, normalmente elas pouco exploram a estrutura topológica do grafo, uma vez que se limitam a descrevê-lo por meio de atributos estatísticos dos links, projetados por especialistas humanos. Embora tais métodos sejam eficazes, novos modelos poderiam tirar mais proveito da topologia se a descrevessem por meio de abordagens orientados a dados, tais como a fatoração matricial. De fato, essa abordagem tem sido aplicada com sucesso em outros domínios como recomendação de filmes. Neste trabalho, propomos um modelo de previsão para Wikification que combina a força dos previsores tradicionais baseados em atributos estatísticos, projetados por seres humanos, com um componente de previsão latente, que modela a topologia do grafo de conceitos usando fatoração matricial. Ao comparar nosso modelo com o estado-da-arte em Wikification, usando uma amostra de artigos Wikipédia, observamos um ganho de até 13% em F1. Além disso, fornecemos uma análise detalhada do desempenho do modelo enfatizando a importância do componente de previsão latente e dos atributos derivados dos links entre os conceitos. Também analisamos o impacto de conceitos ambíguos, o que permite concluir que nosso modelo se porta bem mesmo diante de ambiguidade, apesar de não tratar explicitamente este problema. Ainda realizamos um estudo sobre o impacto da seleção das amostras de treino conforme a qualidade dos seus conteúdos, uma informação disponível em alguns repositórios, tais como a Wikipédia. Nós observamos que o treino com documentos de alta qualidade melhora a precisão do método, minimizando o uso de links desnecessários.
|
2 |
A wikification prediction model based on the combination of latent, dyadic and monadic features / Um modelo de previsão para Wikification baseado na combinação de atributos latentes, diádicos e monádicosRaoni Simões Ferreira 25 April 2016 (has links)
Most of the reference information, nowadays, is found in repositories of documents semantically linked, created in a collaborative fashion and freely available in the web. Among the many problems faced by content providers in these repositories, one of the most important is Wikification, that is, the placement of links in the articles. These links have to support user navigation and should provide a deeper semantic interpretation of the content. Wikification is a hard task since the continuous growth of such repositories makes it increasingly demanding for editors. As consequence, they have their focus shifted from content creation, which should be their main objective. This has motivated the design of automatic Wikification tools which, traditionally, address two distinct problems: (a) how to identify which words (or phrases) in an article should be selected as anchors and (b) how to determine to which article the link, associated with the anchor, should point. Most of the methods in literature that address these problems are based on machine learning approaches which attempt to capture, through statistical features, characteristics of the concepts and its associations. Although these strategies handle the repository as a graph of concepts, normally they take limited advantage of the topological structure of this graph, as they describe it by means of human-engineered link statistical features. Despite the effectiveness of these machine learning methods, better models should take full advantage of the information topology if they describe it by means of data-oriented approaches such as matrix factorization. This indeed has been successfully done in other domains, such as movie recommendation. In this work, we fill this gap, proposing a wikification prediction model that combines the strengths of traditional predictors based on statistical features with a latent component which models the concept graph topology by means of matrix factorization. By comparing our model with a state-of-the-art wikification method, using a sample of Wikipedia articles, we obtained a gain up to 13% in F1 metric. We also provide a comprehensive analysis of the model performance showing the importance of the latent predictor component and the attributes derived from the associations between the concepts. The study still includes the analysis of the impact of ambiguous concepts, which allows us to conclude the model is resilient to ambiguity, even though does not include any explicitly disambiguation phase. We finally study the impact of selecting training samples from specific content quality classes, an information that is available in some respositories, such as Wikipedia. We empirically shown that the quality of the training samples impact on precision and overlinking, when comparing training performed using random quality samples versus high quality samples. / Atualmente, informações de referência são disponibilizadas através de repositórios de documentos semanticamente ligados, criados de forma colaborativa e com acesso livre na Web. Entre os muitos problemas enfrentados pelos provedores de conteúdo desses repositórios, destaca-se a Wikification, isto é, a inclusão de links nos artigos desses repositórios. Esses links possibilitam a navegação pelos artigos e permitem ao usuário um aprofundamento semântico do conteúdo. A Wikification é uma tarefa complexa, uma vez que o crescimento contínuo de tais repositórios resulta em um esforço cada vez maior dos editores. Como consequência, eles têm seu foco desviado da criação de conteúdo, que deveria ser o seu principal objetivo. Isso tem motivado o desenvolvimento de ferramentas de Wikification automática que, tradicionalmente, abordam dois problemas distintos: (a) como identificar que palavras (ou frases) em um artigo deveriam ser selecionados como texto de âncora e (b) como determinar para que artigos o link, associado ao texto de âncora, deveria apontar. A maioria dos métodos na literatura que abordam esses problemas usam aprendizado de máquina. Eles tentam capturar, através de atributos estatísticos, características dos conceitos e seus links. Embora essas estratégias tratam o repositório como um grafo de conceitos, normalmente elas pouco exploram a estrutura topológica do grafo, uma vez que se limitam a descrevê-lo por meio de atributos estatísticos dos links, projetados por especialistas humanos. Embora tais métodos sejam eficazes, novos modelos poderiam tirar mais proveito da topologia se a descrevessem por meio de abordagens orientados a dados, tais como a fatoração matricial. De fato, essa abordagem tem sido aplicada com sucesso em outros domínios como recomendação de filmes. Neste trabalho, propomos um modelo de previsão para Wikification que combina a força dos previsores tradicionais baseados em atributos estatísticos, projetados por seres humanos, com um componente de previsão latente, que modela a topologia do grafo de conceitos usando fatoração matricial. Ao comparar nosso modelo com o estado-da-arte em Wikification, usando uma amostra de artigos Wikipédia, observamos um ganho de até 13% em F1. Além disso, fornecemos uma análise detalhada do desempenho do modelo enfatizando a importância do componente de previsão latente e dos atributos derivados dos links entre os conceitos. Também analisamos o impacto de conceitos ambíguos, o que permite concluir que nosso modelo se porta bem mesmo diante de ambiguidade, apesar de não tratar explicitamente este problema. Ainda realizamos um estudo sobre o impacto da seleção das amostras de treino conforme a qualidade dos seus conteúdos, uma informação disponível em alguns repositórios, tais como a Wikipédia. Nós observamos que o treino com documentos de alta qualidade melhora a precisão do método, minimizando o uso de links desnecessários.
|
3 |
Concept-based and relation-based corpus navigation : applications of natural language processing in digital humanities / Navigation en corpus fondée sur les concepts et les relations : applications du traitement automatique des langues aux humanités numériquesRuiz Fabo, Pablo 23 June 2017 (has links)
La recherche en Sciences humaines et sociales repose souvent sur de grandes masses de données textuelles, qu'il serait impossible de lire en détail. Le Traitement automatique des langues (TAL) peut identifier des concepts et des acteurs importants mentionnés dans un corpus, ainsi que les relations entre eux. Ces informations peuvent fournir un aperçu du corpus qui peut être utile pour les experts d'un domaine et les aider à identifier les zones du corpus pertinentes pour leurs questions de recherche. Pour annoter automatiquement des corpus d'intérêt en Humanités numériques, les technologies TAL que nous avons appliquées sont, en premier lieu, le liage d'entités (plus connu sous le nom de Entity Linking), pour identifier les acteurs et concepts du corpus ; deuxièmement, les relations entre les acteurs et les concepts ont été déterminées sur la base d'une chaîne de traitements TAL, qui effectue un étiquetage des rôles sémantiques et des dépendances syntaxiques, entre autres analyses linguistiques. La partie I de la thèse décrit l'état de l'art sur ces technologies, en soulignant en même temps leur emploi en Humanités numériques. Des outils TAL génériques ont été utilisés. Comme l'efficacité des méthodes de TAL dépend du corpus d'application, des développements ont été effectués, décrits dans la partie II, afin de mieux adapter les méthodes d'analyse aux corpus dans nos études de cas. La partie II montre également une évaluation intrinsèque de la technologie développée, avec des résultats satisfaisants. Les technologies ont été appliquées à trois corpus très différents, comme décrit dans la partie III. Tout d'abord, les manuscrits de Jeremy Bentham, un corpus de philosophie politique des 18e et 19e siècles. Deuxièmement, le corpus PoliInformatics, qui contient des matériaux hétérogènes sur la crise financière américaine de 2007--2008. Enfin, le Bulletin des Négociations de la Terre (ENB dans son acronyme anglais), qui couvre des sommets internationaux sur la politique climatique depuis 1995, où des traités comme le Protocole de Kyoto ou les Accords de Paris ont été négociés. Pour chaque corpus, des interfaces de navigation ont été développées. Ces interfaces utilisateur combinent les réseaux, la recherche en texte intégral et la recherche structurée basée sur des annotations TAL. À titre d'exemple, dans l'interface pour le corpus ENB, qui couvre des négociations en politique climatique, des recherches peuvent être effectuées sur la base d'informations relationnelles identifiées dans le corpus: les acteurs de la négociation ayant discuté un sujet concret en exprimant leur soutien ou leur opposition peuvent être recherchés. Le type de la relation entre acteurs et concepts est exploité, au-delà de la simple co-occurrence entre les termes du corpus. Les interfaces ont été évaluées qualitativement avec des experts de domaine, afin d'estimer leur utilité potentielle pour la recherche dans leurs domaines respectifs. Tout d'abord, il a été vérifié si les représentations générées pour le contenu des corpus sont en accord avec les connaissances des experts du domaine, pour déceler des erreurs d'annotation. Ensuite, nous avons essayé de déterminer si les experts pourraient être en mesure d'avoir une meilleure compréhension du corpus grâce à avoir utilisé les applications, par exemple, s'ils ont trouvé de l'évidence nouvelle pour leurs questions de recherche existantes, ou s'ils ont trouvé de nouvelles questions de recherche. On a pu mettre au jour des exemples où un gain de compréhension sur le corpus est observé grâce à l'interface dédiée au Bulletin des Négociations de la Terre, ce qui constitue une bonne validation du travail effectué dans la thèse. En conclusion, les points forts et faiblesses des applications développées ont été soulignés, en indiquant de possibles pistes d'amélioration en tant que travail futur. / Social sciences and Humanities research is often based on large textual corpora, that it would be unfeasible to read in detail. Natural Language Processing (NLP) can identify important concepts and actors mentioned in a corpus, as well as the relations between them. Such information can provide an overview of the corpus useful for domain-experts, and help identify corpus areas relevant for a given research question. To automatically annotate corpora relevant for Digital Humanities (DH), the NLP technologies we applied are, first, Entity Linking, to identify corpus actors and concepts. Second, the relations between actors and concepts were determined based on an NLP pipeline which provides semantic role labeling and syntactic dependencies among other information. Part I outlines the state of the art, paying attention to how the technologies have been applied in DH.Generic NLP tools were used. As the efficacy of NLP methods depends on the corpus, some technological development was undertaken, described in Part II, in order to better adapt to the corpora in our case studies. Part II also shows an intrinsic evaluation of the technology developed, with satisfactory results. The technologies were applied to three very different corpora, as described in Part III. First, the manuscripts of Jeremy Bentham. This is a 18th-19th century corpus in political philosophy. Second, the PoliInformatics corpus, with heterogeneous materials about the American financial crisis of 2007-2008. Finally, the Earth Negotiations Bulletin (ENB), which covers international climate summits since 1995, where treaties like the Kyoto Protocol or the Paris Agreements get negotiated.For each corpus, navigation interfaces were developed. These user interfaces (UI) combine networks, full-text search and structured search based on NLP annotations. As an example, in the ENB corpus interface, which covers climate policy negotiations, searches can be performed based on relational information identified in the corpus: the negotiation actors having discussed a given issue using verbs indicating support or opposition can be searched, as well as all statements where a given actor has expressed support or opposition. Relation information is employed, beyond simple co-occurrence between corpus terms.The UIs were evaluated qualitatively with domain-experts, to assess their potential usefulness for research in the experts' domains. First, we payed attention to whether the corpus representations we created correspond to experts' knowledge of the corpus, as an indication of the sanity of the outputs we produced. Second, we tried to determine whether experts could gain new insight on the corpus by using the applications, e.g. if they found evidence unknown to them or new research ideas. Examples of insight gain were attested with the ENB interface; this constitutes a good validation of the work carried out in the thesis. Overall, the applications' strengths and weaknesses were pointed out, outlining possible improvements as future work.
|
4 |
Encyclopaedic question answeringDornescu, Iustin January 2012 (has links)
Open-domain question answering (QA) is an established NLP task which enables users to search for speciVc pieces of information in large collections of texts. Instead of using keyword-based queries and a standard information retrieval engine, QA systems allow the use of natural language questions and return the exact answer (or a list of plausible answers) with supporting snippets of text. In the past decade, open-domain QA research has been dominated by evaluation fora such as TREC and CLEF, where shallow techniques relying on information redundancy have achieved very good performance. However, this performance is generally limited to simple factoid and deVnition questions because the answer is usually explicitly present in the document collection. Current approaches are much less successful in Vnding implicit answers and are diXcult to adapt to more complex question types which are likely to be posed by users. In order to advance the Veld of QA, this thesis proposes a shift in focus from simple factoid questions to encyclopaedic questions: list questions composed of several constraints. These questions have more than one correct answer which usually cannot be extracted from one small snippet of text. To correctly interpret the question, systems need to combine classic knowledge-based approaches with advanced NLP techniques. To Vnd and extract answers, systems need to aggregate atomic facts from heterogeneous sources as opposed to simply relying on keyword-based similarity. Encyclopaedic questions promote QA systems which use basic reasoning, making them more robust and easier to extend with new types of constraints and new types of questions. A novel semantic architecture is proposed which represents a paradigm shift in open-domain QA system design, using semantic concepts and knowledge representation instead of words and information retrieval. The architecture consists of two phases, analysis – responsible for interpreting questions and Vnding answers, and feedback – responsible for interacting with the user. This architecture provides the basis for EQUAL, a semantic QA system developed as part of the thesis, which uses Wikipedia as a source of world knowledge and iii employs simple forms of open-domain inference to answer encyclopaedic questions. EQUAL combines the output of a syntactic parser with semantic information from Wikipedia to analyse questions. To address natural language ambiguity, the system builds several formal interpretations containing the constraints speciVed by the user and addresses each interpretation in parallel. To Vnd answers, the system then tests these constraints individually for each candidate answer, considering information from diUerent documents and/or sources. The correctness of an answer is not proved using a logical formalism, instead a conVdence-based measure is employed. This measure reWects the validation of constraints from raw natural language, automatically extracted entities, relations and available structured and semi-structured knowledge from Wikipedia and the Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia link graph to Vnd relevant information. This method achieves good precision and allows only pages of a certain type to be considered, but is aUected by the incompleteness of the existing markup targeted towards human readers. In order to address this, a semantic analysis module which disambiguates entities is developed to enrich Wikipedia articles with additional links to other pages. The module increases recall, enabling the system to rely more on the link structure of Wikipedia than on word-based similarity between pages. It also allows authoritative information from diUerent sources to be linked to the encyclopaedia, further enhancing the coverage of the system. The viability of the proposed approach was evaluated in an independent setting by participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL outperformed standard textual QA systems as well as semi-automatic approaches. Having established a feasible way forward for the design of open-domain QA systems, future work will attempt to further improve performance to take advantage of recent advances in information extraction and knowledge representation, as well as by experimenting with formal reasoning and inferencing capabilities.
|
Page generated in 0.093 seconds