• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 9
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 28
  • 26
  • 17
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Técnicas de inteligência artificial aplicadas na análise de mercados elétricos com inserção de geração eólica e de sistemas de armazenamento de energia nas redes elétricas de potência. / Artificial intelligence techniques applied to the analysis of electrical markets with insertion of wind power and energy storage systems on power grids.

SARAIVA, Felipe Oliveira Silva 17 February 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-02T11:31:43Z No. of bitstreams: 1 Felipe Oliveira.pdf: 3179442 bytes, checksum: 0988804a0a58c2aaf337ea2f5034dc42 (MD5) / Made available in DSpace on 2017-08-02T11:31:43Z (GMT). No. of bitstreams: 1 Felipe Oliveira.pdf: 3179442 bytes, checksum: 0988804a0a58c2aaf337ea2f5034dc42 (MD5) Previous issue date: 2017-02-17 / The locational marginal prices (LMPs) are essential financial guidelines for the electricity industry, which orientates most of the projects and deliberations in electrical market environments. In current scenario of the electricity markets, wind power plants and energy storage systems have been revealing itself as feasible and relevant electrical energy supply alternatives. In this work a generic methodology based on artificial intelligence (AI) techniques is formulated and applied to the calculation and decomposition of LMPs of electric power systems (EPS) with the insertion of energy storage systems and wind farms. In the proposed AI-based methodology the optimal power flow (OPF) model, on which the calculation and decomposition of LMP is based, considers the wind behavior profile volatility, the risks of wind power levels previously scheduled, and the energy storage systems operative peculiarities. The proposed AI-based methodology takes into account the mathematical and computational models of the particle swarm optimization (PSO) algorithm. This proposal was properly implemented and applied for the computation and decomposition of LMPs of test systems and considering different operative scenarios involving conventional power plants, wind farms, and energy storage systems. / Os preços marginais locacionais (LMPs – Locational Marginal Prices) consistem em diretrizes financeiras mercadologicamente indispensáveis para a indústria da eletricidade, os quais norteiam grande parte dos projetos e deliberações no âmbito dos mercados elétricos. No panorama vigente dos mercados elétricos, as plantas de geração eólica e os sistemas de armazenamento de energia vêm progressiva e ininterruptamente se revelando alternativas de suprimento de eletricidade cada vez mais relevantes e viáveis. Neste trabalho, é formulada uma metodologia genérica baseada em técnicas de inteligência artificial (IA) cuja aplicação tem o objetivo de computar e decompor os LMPs associados às barras constituintes de um sistema elétrico de potência (SEP) integrado por geradores convencionais, plantas de geração eólica e por sistemas de armazenamento de energia. Na metodologia IA proposta, o modelo de fluxo de potência ótimo (FPO) sobre o qual se alicerça o cômputo e a decomposição dos LMPs associados às barras de um SEP, leva em consideração a volatilidade inerente ao perfil comportamental dos ventos, os riscos associados à assunção de níveis previamente programados de potência proveniente da geração eólica e as peculiaridades operativas concernentes aos sistemas de armazenamento de energia. Adotando-se os modelos matemáticos e computacionais dos algoritmos de otimização por enxame de partículas (PSO – Particle Swarm Optimization), a metodologia IA proposta foi devidamente implementada e aplicada na aquisição e decomposição dos LMPs associados às barras constituintes de sistemas-testes submetidos a diferentes cenários operativos envolvendo centrais de geração convencionais, plantas de geração eólica e sistemas de armazenamento de energia.
52

System Aspects and Modulation Strategies of an HVDC-based Converter System for Wind Farms

Meier, Stephan January 2009 (has links)
In this thesis, a new HVDC-based converter system for wind farms is investigated. It is based on a mutually commutated soft-switching converter system and provides a unique integrated solution for the wind turbine generator drive systems, the wind turbine interconnection, and the power conversion for HVDC transmission. In a wind farm, the mutually commutated converter system is a distributed system. A medium-frequency collection grid connects the converter station, equipped with a single-phase voltage source converter and a medium-frequency transmission transformer, with the wind turbines, each containing a cycloconverter and a medium-frequency distribution transformer. In this thesis, various system aspects regarding the application of a distributed mutually commutated converter system in a wind farm are investigated. Special attention is paid to the design of a medium-frequency collection grid that has an acceptable level of transient overvoltages, the design of medium-frequency transformers with suitable magnetic, electric and thermal properties, and the development of a strategy to commutate the voltage source converter during low power generation. In order to adapt the mutually commutated converter system for an application in a wind farm, it had to be further developped. Different carrier-based and space-vector oriented modulation methods have been investigated. It turns out that for any load angle there is a quasi-discontinuous pulse width modulation strategy that can produce the same pulse patterns as space vector modulation. In addition, a modulation strategy has been developed that allows to replace the IGBTs in the cycloconverter with cheap, robust, and reliable fast thyristors, despite their absence of turn-off capability. The feasibility of different modulation strategies for mutually commutated converter systems has been verified on a down-scaled prototype converter system with both IGBT- and thyristor-based cycloconverters. Finally, a feasible wind farm layout is proposed, which considerably reduces the energy generation costs for large winds farms distant to a strong grid connection point. As a consequence, the proposed solution may facilitate the establishment of remotely located wind farms. / QC 20100802
53

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects

Uraz, Emre January 2011 (has links)
Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are several factors that can turn this process into a challenge. These factors can either be due to offshore site conditions or the technical limitations of the installation vessels. Each project has its own characteristic parameters and requires a unique optimum solution. This paper identifies the dynamics of the installation process and analyzes the effects of each phase on the progression of events.The challenges in wind turbine installations due to offshore environment were investigated, the effects of each were explained and their significances were stressed. Special installation vessels were examined and their technical specifications were analyzed in terms of working conditions, dimensions, service performances, and crane capacities as well as projecting future design trends. Several offshore wind farm projects were analyzed; their installation methods were specified, and compared to each other to determine advantages and disadvantages of different pre-assembly concepts. The durations of the sub-phases of the process were defined in terms of different variables such as site conditions and individual vessel performance. These definitions were used for making time estimations, and conducting further analyses regarding the effects of different site specific parameters on the overall project duration.In conclusion, this study considered the main operation parameters in an offshore wind turbine installation context: the benefits and drawbacks of different pre-assembly methods were researched and evaluated resulting in new knowledge and a productive contribution for optimizing “the offshore turbine transportation and installation process”, based on actual time usage.
54

Advances in power system small signal stability analysis considering load modeling and emerging generation resource

Yateendra Mishra Unknown Date (has links)
With the increasing complexity of the power system, electromechanical oscillations are becoming one of the major problem. Several blackouts have been reported in the past due to insufficient damping of the oscillatory modes. The starting point to avoid catastrophic behaviors would be to simulate actual power system and study the response of the system under various outages leading to blackouts. Recently, it has been identified that appropriate modeling of the load is necessary to match the actual system behavior with the computer simulated response. This research throws some insight into the detailed load modeling and its impact on the system small signal stability. In particular, Composite load model is proposed and its effect on the system small signal stability is investigated. Modeling all the loads in a large power system would be a cumbersome job and hence the method for identifying the most sensitive load location is also proposed in the thesis. The effect of load modeling on the eigenvalue movement is also investigated. The low damped electromechanical modes are always undesirable in the large inter-connected power systems as they might get excited under some event leading to growing oscillations. Proper damping of these modes is essential for effective and reliable system operation. Power system stabilizers have been proved to be an effective way of damping these electromechanical modes. The optimal number and location of PSS to effectively damp the modes via improved Differential algorithm is proposed. Moreover, the effect of TCSC, series compensated FACTs device, on enhancing the system damping is investigated. A fixed order model matching technique is presented to design a damping controller for the TCSC. With the increasing global pressure for reducing carbon emissions, there is a great amount of interest in the renewable sources of energy, particularly Wind Energy Conversion Systems. Of all the present methods of wind generation systems, Doubly Fed Induction Generation (DFIG) based wind farms are gaining popularity. The comparison of various methods of wind generation techniques is presented. In particular, the impact of DFIG based wind farms on the system small signal stability is investigated in this work. Co-ordinated tuning of the controllers is performed using Bacterial Foraging Technique, which is another member of Evolutionary algorithms. Damping controller for the DFIG system is proposed to enhance the damping of the electromechanical modes. Results have proved the effectiveness of the control methodology. The contributions made in this thesis could be utilized to promote the further development of the damping controllers for large power systems.
55

Advances in power system small signal stability analysis considering load modeling and emerging generation resource

Yateendra Mishra Unknown Date (has links)
With the increasing complexity of the power system, electromechanical oscillations are becoming one of the major problem. Several blackouts have been reported in the past due to insufficient damping of the oscillatory modes. The starting point to avoid catastrophic behaviors would be to simulate actual power system and study the response of the system under various outages leading to blackouts. Recently, it has been identified that appropriate modeling of the load is necessary to match the actual system behavior with the computer simulated response. This research throws some insight into the detailed load modeling and its impact on the system small signal stability. In particular, Composite load model is proposed and its effect on the system small signal stability is investigated. Modeling all the loads in a large power system would be a cumbersome job and hence the method for identifying the most sensitive load location is also proposed in the thesis. The effect of load modeling on the eigenvalue movement is also investigated. The low damped electromechanical modes are always undesirable in the large inter-connected power systems as they might get excited under some event leading to growing oscillations. Proper damping of these modes is essential for effective and reliable system operation. Power system stabilizers have been proved to be an effective way of damping these electromechanical modes. The optimal number and location of PSS to effectively damp the modes via improved Differential algorithm is proposed. Moreover, the effect of TCSC, series compensated FACTs device, on enhancing the system damping is investigated. A fixed order model matching technique is presented to design a damping controller for the TCSC. With the increasing global pressure for reducing carbon emissions, there is a great amount of interest in the renewable sources of energy, particularly Wind Energy Conversion Systems. Of all the present methods of wind generation systems, Doubly Fed Induction Generation (DFIG) based wind farms are gaining popularity. The comparison of various methods of wind generation techniques is presented. In particular, the impact of DFIG based wind farms on the system small signal stability is investigated in this work. Co-ordinated tuning of the controllers is performed using Bacterial Foraging Technique, which is another member of Evolutionary algorithms. Damping controller for the DFIG system is proposed to enhance the damping of the electromechanical modes. Results have proved the effectiveness of the control methodology. The contributions made in this thesis could be utilized to promote the further development of the damping controllers for large power systems.
56

Análise de de sistemas de distribuição com modelagem de geradores eólio-elétricos dos tipos I, II e IV / Analysis of distribution systems modeling wind generators of types I, II and IV

Galdino, Francisco Clebson Sousa 05 June 2015 (has links)
Made available in DSpace on 2016-08-31T13:33:43Z (GMT). No. of bitstreams: 1 FranciscoCSG_DISSERT.pdf: 1707836 bytes, checksum: f3a5558058650f68e08a82541000dc7b (MD5) Previous issue date: 2015-06-05 / In power distribution systems are the major causes of voltage imbalances, variations in single-phase loads cause the currents in the conductors of the three phases is different, resulting in different voltage drops, causing imbalance. The study of voltage imbalances in the distribution of energy is very important, since the proper functioning of equipment connected to the system is directly related to the mains imbalance factor. When it comes to stress profiles, has become one of the biggest challenges of electric utilities, which is to serve consumers and customers with adequate voltage levels to those required in current legislation in Brazil has the 2001 resolution no. 505 ANEEL (National Electric Energy Agency) stating that the voltage to be contracted with the utility or the ONS should be between 95% (0.95 pu) and 105% (1.05 pu) of the nominal operating voltage system at the delivery point. In relation to electrical losses, although not established limits by law, these are an important economic factor for electric utilities, seeking to reduce them to maximize their profits. When it comes to connecting wind turbines to the distribution systems is not aware of scholarly conducting parallel operating conditions of the various components that operate in this plan when they are working together with the different configurations of wind generators. The objective of this study is to analyze the imbalances problem, tensions profiles and electrical losses in distribution systems by various operating situations, especially with the inclusion of wind turbines type I, II and IV, based on the system 13 bars IEEE. Also, are proposed and simulated some ways to reduce imbalances and losses through the use of engineering techniques: as promoting the balancing system loads, connecting wind farms to the distribution feeder, installing banks of single-phase voltage regulators at substations and correcting the power factor of the generator turbines. Technical proposals to reduce the levels of network imbalance are effective and also influenced the reduction of overall system losses and improve the levels of stress profiles and are therefore measures that may contribute to the proper functioning of a power system / Nos sistemas de distribuição de energia elétrica se encontram as maiores causas dos desequilíbrios de tensão, variações nas cargas monofásicas fazem com que as correntes nos condutores das três fases sejam diferentes, o que resulta em quedas de tensões diferentes, provocando desequilíbrio. O estudo de desequilíbrios de tensão na distribuição de energia é muito importante, uma vez que o bom funcionamento de equipamentos ligados ao sistema está diretamente relacionado ao fator de desequilíbrio da rede elétrica. Quando se trata de perfis de tensões, tem-se um dos maiores desafios das concessionárias de energia elétrica, que é atender os consumidores e clientes com níveis de tensão adequados aos exigidos na legislação vigente, no Brasil tem-se a resolução de 2001 nº 505 da ANEEL (Agência Nacional de Energia Elétrica) estabelecendo que a tensão a ser contratada com a concessionária ou com o ONS deve situar-se entre 95% (0,95 p.u) e 105% (1,05 p.u) da tensão nominal de operação do sistema no ponto de entrega. Já com relação às perdas elétricas, apesar de não serem estabelecidos limites pela legislação vigente, estas são um importante fator econômico para as concessionárias de energia elétrica, que buscam diminuí-las para maximizar seus lucros. Quando se trata de conexão de turbinas eólicas nos sistemas de distribuição não se tem conhecimento de trabalhos acadêmicos que realizam um paralelo das condições de operação dos diversos componentes que atuam nesse plano quando os mesmos estão atuando juntamente com as diferentes configurações de geradores eólicos. O objetivo deste trabalho é analisar o problema de desequilíbrios, perfis de tensões e das perdas elétricas em sistemas de distribuição mediante diversas situações de operação, principalmente com a inserção de turbinas eólicas tipo I, II e IV, tomando como base o sistema 13 barras do orgão IEEE. Além disso, são propostas e simuladas algumas maneiras de reduzir os desequilíbrios e perdas através do uso de técnicas de engenharia: como promovendo o balanceamento de cargas do sistema, conectando parques eólicos ao alimentador de distribuição, instalando bancos de reguladores de tensão monofásicos em subestações e corrigindo o fator de potência dos geradores das turbinas. As técnicas propostas para reduzir os graus de desequilíbrio da rede se mostraram eficazes e influenciaram também na redução das perdas globais do sistema e melhora dos níveis de perfis de tensões, sendo portanto medidas que podem contribuir para o bom funcionamento de um sistema de energia elétrica
57

Reactive Power Co-ordination in Grid Connected Wind Farms for Voltage Stability Enchancement

Reddy, Kommi Krishna January 2013 (has links) (PDF)
Recent decades have witnessed a significant increment in power contribution from wind generators. This increment in penetration requires power engineers to tackle multi-fold challenges concerning operational and stability aspects. There exists a significant attention among the researchers in analyzing the impact of wind generation on various system aspects. This thesis focuses on steady state voltage stability aspects with penetration of Variable speed wind generators. Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of wind generators as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by wind generators in an economical and efficient way. Certain types of wind generators can support reactive power for the Power Market. Fixed and Semi-Variable speed wind turbine generators were predominantly employed during the early installations of wind generators. These units require reactive power support from the grid and are usually equipped with capacitor banks to provide the necessary reactive power. Further, STATic synchronous COMpensator (STATCOM) and Static Var Compensator (SVC) with various configurations were proposed to enhance the system operations under normal and disturbed conditions. On the other hand, Variable speed wind turbine generators provide flexibility in control and hence are becoming increasingly popular. Popular among this class of wind turbine generating units are Doubly Fed Induction Generator(DFIG) and induction/synchronous Generator with Front End Converter(GFEC). Contrary to Fixed and Semi-Variable speed wind machines, Variable speed wind turbine generators are capable of providing reactive power to the grid. The converter and control schemes associated with these machines permits controlling the active and reactive power output to desired level. It is possible to control the reactive power output of these machines independently of the active power. Researchers in the past have investigated the impact of reactive power output of variable speed wind machines on system stability. In literature, approaches are proposed to utilize the flexibility in reactive power generation of DFIG to reduce system losses, improve reliability in static and dynamic system operation. Approaches in literature investigate the impact on voltage stability of system by considering the flexibility of reactive power output of wind machine in isolation. However, significant improvement in static voltage stability, voltage profile, system power losses etc. can be attained if the Reactive Power output of Variable Speed wind machines can be properly coordinated with other reactive power controllers. The prime objective of the thesis is to propose algorithms to coordinate the reactive power output of Variable Speed Wind Generators with other reactive power controllers for Enhancement in voltage stability margin, system losses and voltage profiles.
58

Wind power resource assessment, design of grid - connected wind farm and hybrid power system

Rehman, Shafiqur 18 May 2012 (has links)
An exponentially growing global population, power demands, pollution levels and, on the other hand, rapid advances in means of communication have made the public aware of the complex energy situation. The Kingdom of Saudi Arabia has vast open land, an abundance of fossil fuel, a small population but has always been among the front-runners where the development and utilisation of clean sources of energy are concerned. Several studies on wind, solar and geothermal sources of energy have been conducted in Saudi Arabia. Solar photovoltaic (pv) has been used for a long time in many applications such as cathodic protection, communication towers and remotely located oil field installations. Recently, a 2MW grid-connected pv power plant has been put online and much larger solar desalination plants are in planning stage. Wind resource assessment, hub height optimisation, grid-connected wind farm and hybrid power system design were conducted in this study using existing methods. Historical daily mean wind speed data measured at 8 to 12metres above ground level at national and international airports in the kingdom over a period of 37 years was used to obtain long-term annual and monthly mean wind speeds, annual mean wind speed trends, frequency distribution, Weibull parameters, wind speed maps, hub height optimisation and energy yield using an efficient modern wind turbine of 2.75MW rated power. A further detailed analysis (such as estimation of wind shear exponent, Weibull parameters at different heights, frequency distribution at different heights, energy yield and plant capacity factor and wind speed variation with height) was conducted using wind speed measurements made at 20, 30 and 40metres above ground level. As a first attempt, an empirical correlation was developed for the estimation of near-optimal hub height (HH = 142.035 * (α) + 40.33) as a function of local wind shear exponent (α) with a correlation coefficient of 97%. This correlation was developed using the energy yield from a wind turbine of 1 000kW rated power and wind speed and local exponent for seven locations in Saudi Arabia. A wind-pv-diesel hybrid power system was designed and specifications were made for a remotely located village, which is being fed 100% by diesel power generating units. The proposed system, if developed, will offset around 35% of the diesel load and therefore will result in decreased air pollution by almost the same amount. The developed wind speed maps, the frequency distributions and estimated local wind shear exponents for seven locations and energy yield will be of great help in defining the further line of action and policy-building towards wind power development and utilisation in the kingdom. The study also recommends conducting a wind measurement campaign using tall towers with wind measurements at more than one height and estimating the local wind shear exponents and developing a wind atlas for the kingdom. The study further states that a grid-connected wind farm of moderate capacity of 40MW should be developed using turbines of varying rated powers. The wind speed data was also analysed using wavelet transform and Fast Fourier Transform (FFT) to understand the fluctuation in wind speed time series for some of the stations. It is also recommended that policy-makers should take firm decision on the development of hybrid power systems for remotely located populations which are not yet connected with the grid. There are two challenges which need research: one is the effect of dust on the moving and structural elements of the wind turbines and the second is the effect of high prevailing temperatures on the performance and efficiency of the same. / Thesis (PhD)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / PhD / Unrestricted
59

Evaluation économique des changements des paysages littoraux : le cas du développement des parcs éoliennes dans la Mer Méditerranée / A welfare economic valuation of tourist preferences for the siting ofoffshore wind farms : the case of the French Mediterranean

Westerberg, Vanja 15 December 2012 (has links)
Le gouvernement français s'est engagé sur un ambitieux objectif de développer l'éolien offshore pour atteindre une capacité de 6 GW d'ici 2020. La construction d'éoliennes terrestres, tout comme les éoliennes offshore, est très contestée en raison de leur impact visuel sur le paysage. Dans la région française du Languedoc Roussillon, les acteurs concernés (industrie touristique, commerces, pêcheurs, élus locaux), craignent que la construction de parc éoliens offshore aie des effets néfastes sur le tourisme, en donnant à la région une image industrialisée et « bétonnée ». Jusqu'à présent, en mer du Nord, il n'a jamais été mis en évidence que la construction de parcs éoliens offshore ait réellement affecté l'attractivité touristique des côtes environnantes. On peut se demander si ce constat peut être extrapolé à la cote méditerranéenne. Depuis une dizaine d'années, lorsqu'ont débuté les débats sur la possibilité d'exploiter les vents méditerranéens, beaucoup de préjugés sont apparus sur l'impact potentiel négatif que cela pourrait avoir sur le tourisme. La réticence a d'autant plus augmenté lorsque le Languedoc Roussillon a été inclus dans le zonage de l'appel d'offre concernant la construction de 2 GW de parcs éoliens.Il était donc pertinent de mener une enquête auprès des touristes du littoral pour évaluer comment l'installation de parcs éoliens, installés à des distances réalistes des côtés, pourrait affecter le tourisme balnéaire. Par ailleurs, il était également intéressant de proposer des stratégies que les stations balnéaires pourraient adopter pour augmenter le nombre de touristes et leurs profits, avec ou sans parc éolien. Pour répondre à ces questions, une enquête d'évaluation mobilisant la méthode des « choice experiment », a été réalisée durant l'été 2010, auprès de plus de 350 touristes, sur les plages languedociennes.Les résultats de cette enquête, présentés au chapitre 3, montrent que les coûts liés à la nuisance visuelle s'annulent lorsque le parc éolien est installé à des distances comprises entre 8 et 12 km de la côte. L'enquête a également mis en évidence une forte demande pour la mise en place de démarches éco responsable (favorisant les produits locaux, le vélo, les transports publics et les économies d'eau et d'énergie) par les stations balnéaires. Ainsi, nos résultats montrent que la nuisance vécue par l'installation d'un parc à 8 km de la cote serait compensée par la mise en place simultanée d'une « démarche verte ». Par ailleurs, la construction de récifs artificiels associé au parc éolien, qui permettrait l'accès à des loisirs récréatifs (plongée sous marine par ex.) générerait, d'après nos résultats, une augmentation des dépenses des touristes, si ce parc était installé à une distance d'au moins 5 km de la côte.De nos résultats émergent deux principaux constats :- L'implantation d'une éolienne à 12 km de la côte, sans aucune évolution de la station par ailleurs, n'aurait pas d'incidence négative sur le tourisme.- Si la station balnéaire met simultanément en place des actions environnementales et des activités récréatives, le parc éolien peut alors être conçu à partir d'une distance de 5 km de la côte.L'écart entre le Consentement à Payer pour un bien et le Consentement à Recevoir une compensation pour renoncer à ce même bien est un phénomène très largement mis en évidence en économie de l'environnement. Dans une seconde partie de la thèse, nous prenons en compte dans nos estimations économétriques cet écart entre les pertes et des gains dans la fonction d'utilité. En tenant compte de cette asymétrie, nous estimons une réduction de moitié de la nuisance vécue par rapport aux éoliennes si le parc éolien est déjà installé. D'un autre côté, les bénéfices liés aux activités récréatives et à une démarche éco responsable sont perçu comme plus élevés si ces activités étaient déjà mises en place. / The French government has committed itself to an ambitious target of boosting the offshore wind power capacity to reach 6 GW by 2020. Wind turbines onshore as well as offshore are highly contested on visual grounds. Affected stakeholders, ranging from business and property owners, fishermen and elected municipal planners, fear significant negative economic impacts on their ‘business' or their ‘property'. In the French Mediterranean region of the Languedoc Roussillon, the expectation is that the tourist industry will be chagrined in the presence of an offshore wind farm – giving a windy and cemented image of the region. Since talks began about 10 years ago, on the potential for ‘harvesting' the winds of the Mediterranean Sea, many postulates have been made with regard to the impact on coastal tourism. In particular, resistance mounted when plans to include the Languedoc Roussillon in the 2011 tender for the construction of 2 GW wind power capacity were materialising. In this light, it was considered of pertinence to investigate how offshore wind farms, installed at realistic distances from the coast (5, 8 or 12 km), would affect coastal tourism. Additionally, it was considered of interest to help define strategies that coastal community resort may adopt to boost visiting numbers or profit margins with or without wind farms. To answer these questions a full-scale choice experiment valuation survey with over 350 tourists was undertaken in the summer of 2010 on Languedoc beaches.Our survey results show (in chapter 3) that average visual disamenity costs tends to zero, when an offshore wind farm is installed somewhere between 8 and 12 km from the shore. We also find that there is considerable demand for “sustainable” coastal community resorts that favours local produce, bicycling, public transport, energy and water saving devices. Thus, our estimates show that a wind farm installed 8 km from the shore could be ‘compensated for' through the simultaneous ‘greening' of the coastal community resort. If in addition a wind farm is associated with artificial reefs and recreational user access, our results point to an actual rise in tourist related revenues when the wind farm is located min. 5 km from the coast. The policy recommendation is thus two fold: Everything else equals, a wind farm located 12 km offshore will have no negative incidence on tourism. With simultaneous application of a coherent environmental policy and wind farm associated recreational activities, wind farm siting can be conceived from 5 km and outwards.In a latter stage (chapter 5) we explicit account for the well-established fact that humans' over-estimate losses compared with equal-sized gains, in our econometric estimations. By incorporating so-called gain-loss asymmetry in the utility function, we observe that the WTP to remove wind farms had they already been installed is half the compensation required to accept their presence during a vacation. The disamenity costs associated with wind farm installation are thus of a significantly smaller magnitude had the wind farms already been installed. On the other hand, the welfare benefits associated with eco-efficiency and wind farm associated recreational activities are larger had they already been invigorated. The verdict is that asymmetry should be accounted for, or at least recognised in stated preference valuation studies that simultaneously use utility increasing and utility decreasing attributes.
60

Control strategies for offshore wind farms based on PMSG wind turbines and HVdc connection with uncontrolled rectifier

Rodríguez D'Derlée, Johel José 16 December 2013 (has links)
The selection of the bulk power transmission technology in offshore wind farms is strongly related to the wind farm size and its distance to shore. Several alternatives can be evaluated depending on the rated power of the offshore wind farm, the transmission losses and the investment cost for constructing the transmission system. However, when is necessary to connect larger and more distant offshore wind farms; the best technological solution tends to the transmission system based on highvoltage and direct-current with line commutated converters (LCC-HVdc). This dissertation proposes the use of diode-based rectifers as a technical alternative to replace the thyristor-based rectifers in an LCC-HVdc link with unidirectional power flow. This alternative shows advantages with regard to lower conduction losses, lower installation costs and higher reliability. Nonetheless, as a counterpart the offshore ac-grid control performed by the thyristor-based HVdc rectifer is no longer available. This lack of control is compensated by using new control strategies over an offshore wind farm composed by wind turbines with permanent-magnet generators and fully-rated converters. The control strategies have been based mainly on the ability of the wind turbine grid-side converter to perform the control of the offshore ac-grid voltage and frequency. The performance has been evaluated by using PSCAD. Wherein, the most common grid disturbances have been used to demonstrate the fault-ride-through capability as well as the adequate steady state and transient response. / Rodríguez D'derlée, JJ. (2013). Control strategies for offshore wind farms based on PMSG wind turbines and HVdc connection with uncontrolled rectifier [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34510 / TESIS

Page generated in 0.0582 seconds