• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 61
  • 34
  • 22
  • 12
  • 10
  • 10
  • 9
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 520
  • 520
  • 172
  • 151
  • 83
  • 63
  • 63
  • 54
  • 48
  • 48
  • 45
  • 44
  • 41
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine

Bae, Yoon Hyeok 03 October 2013 (has links)
In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kim’s research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future.
122

Studium a ověřování vlastností sběracího ústrojí generátorů pro větrné elektrárny / : STUDY AND VERIFICATION OF PROPERTIES PICK – UP GENERATORS FOR WIND POWER

Glogar, Jaroslav January 2018 (has links)
This master thesis deals with study of properties pick-up generators for wind power. First part of thesis studies wind turbines, its structure, generators and describes advantages and disadvantages of ashore and offshore location. The next part presents description of parts of sliding contact. The main part assesses the impact of sea environment on sliding contact in generators at offshore wind turbines.
123

End of Life Wind Turbine Blade Recycling : Challenges From an Environmental, Economic and Practical Viewpoint

Hagfeldt, Daniel January 2022 (has links)
The goal of the European Union is to make strides towards a circular economy. This means recycling or re-using as much of the material in the economic system as possible. The wind industry faces a great challenge in the years to come as huge quantities of increasingly larger wind turbines reach the end of their service-life. When old wind turbines have been decommissioned, most parts are scrapped and recycled into other applications. The turbineblades however are made from glass- and carbon fibre polymers and are not as easily recycled. Recent bans of putting the blades into landfills steer the industry toward finding new applicationfor the old wind turbine blades. Re-purposing the blades as bridges, shelters, houses and towers has been suggested, as well as re-cycle the material or recover the blades as energy. Regardless of what method is preferred, the wind turbine blades need to be transported to a re-purpose or recycling facility. Because of the distribution of wind turbines within countries, the optimal location of such facilities can be hard to evaluate. The centre-of-gravity method (evaluating the centre-of-mass) has been suggested as a way of evaluating the optimal location of such facilities. The method is built upon the assumption that the wind turbine blade can be easily downsized, transported and accommodated in a single transport. In order to achieve this, the present thesis has compared and evaluated different methods of segmenting the wind turbine blade (mechanical, thermal and chemical) as well as different loading and compressing methods. The mechanical separation methods tend to be more suitable than the thermal and chemical counterparts. The choice of loading methods is dictated by the resulting fraction size of the wind turbine blade after separation. The mass density of the resulting blade could be increased with a suitable way of compression (hydraulic or gravity).
124

Αεροδυναμική και αεροακουστική ανάλυση ανεμοκινητήρων οριζοντίου άξονα

Τάχος, Νικόλαος 26 August 2014 (has links)
Αντικείμενο της εργασίας είναι η αεροδυναμική και αεροακουστική ανάλυση στροφείων ανεμοκινητήρων οριζοντίου άξονα (α-ο-α). Ο υπολογισμός του πεδίου ροής και των αεροδυναμικών συντελεστών του στροφείου ενός ανεμοκινητήρα επιτυγχάνεται κατά δύο τρόπους, με σκοπό την άμεση σύγκριση των αποτελεσμάτων με κριτήρια αφενός την ακρίβεια και αφετέρου την ευκολία ή πρακτικότητα που προσδιορίζεται κύρια σε όρους χρόνου υπολογισμού και διαθεσιμότητας υπολογιστικών πόρων. Οι δύο επιλεγμένοι τρόποι που διαφοροποιούνται στην φυσικο-μαθηματική μοντελοποίηση του προβλήματος ροής γύρω από το στροφείο του ανεμοκινητήρα, αποτελούν δύο δοκιμασμένες μεθοδολογίες ή τεχνικές ανάλυσης και σχεδιασμού περιστρεφόμενων στροφείων, τα οποία μπορούν να λειτουργούν ως κινητήριες μηχανές ή ως εργομηχανές, είναι η μέθοδος των επιφανειακών στοιχείων και η αριθμητική επίλυση των εξισώσεων Navier-Stokes. Για την αξιολόγηση των υπολογιστικών αποτελεσμάτων επιλέχθηκε ως στροφείο αναφοράς, ο πειραματικός ανεμοκινητήρας NREL phase II. Ο αλγόριθμος των επιφανειακών στοιχείων συμπλέχτηκε με ολοκληρωτικά σχήματα πρόλεξης και υπολογισμού του οριακού στρώματος με σκοπό να συμπεριληφθούν τα φαινόμενα συνεκτικότητας της ροής. Πραγματοποιήθηκε παραμετρική ανάλυση του δρομέα του ανεμοκινητήρα για διαφορετικές συνθήκες λειτουργίας του. Η σύγκριση των αποτελεσμάτων των συντελεστών πίεσης των περιστρεφόμενων πτερυγίων για τέσσερις θέσεις κατά το εκπέτασμα του πτερυγίου με τα πειραματικά δεδομένα δείχνει ικανοποιητική συμφωνία. Για την ανάλυση του πεδίου ροής που παράγεται γύρω από περιστρεφόμενους δρομείς α-ο-α χρησιμοποιήθηκε η μέθοδος της υπολογιστικής ρευστοδυναμικής (CFD). Πραγματοποιήθηκαν RANS προσομοιώσεις για διαφορετικές συνθήκες λειτουργίας του ανεμοκινητήρα και για τέσσερα διαφορετικά μοντέλα τύρβης. Το k-ω SST μοντέλο τύρβης έχει τις μικρότερες αποκλίσεις με τα πειραματικά αποτελέσματα. Η αεροακουστική ανάλυση του στροφείου ενός ανεμοκινητήρα επιτυγχάνεται με την επίλυση της ακουστικής εξίσωσης Ffowcs-Williams Hawkings, μέσω ενός υπολογιστικού κώδικα που αναπτύχθηκε γι’ αυτό το σκοπό. Από τα αποτελέσματα των προσομοιώσεων, φάνηκε στα ροδογράμματα κατευθυντικότητας του ήχου, τα επίπεδα της ακουστικής πίεσης να είναι υψηλότερα για θέσεις παρατηρητή ανάντη και κατάντη του ανεμοκινητήρα. / The aim of this study is to represent the aerodynamic and aeroacoustic analysis of horizontal axis wind turbine (ΗAWT) rotors. The calculation of the flow field and the aerodynamic coefficients over the wind turbine rotor are performed using two methodologies, the panel method and the numerical solution of Navier-Stokes equations. These two methodologies are differentiated in the mathematical modeling approach of the flow around the rotor and are utilized in the design and manufacturing phases of horizontal axis wind turbine rotors. Moreover, the results of these two methodologies are compared in terms of the accuracy and the computational time required. For the evaluation of the computational results the experimental wind turbine NREL phase II is chosen as the reference rotor. An invicid/viscous interaction algorithm is developed using integral boundary layer equations coupled with the low order panel method solution in order to account the viscous effects. A parametric analysis of the wind turbine rotor is conducted for different operating conditions. The comparison of the results of the pressure coefficients of the rotating blades for four spanwise positions along the blade with the experimental data shows satisfactory agreement. The analysis of the near and far flow field of HAWT is obtained via CFD by RANS simulations of four different turbulence models (Spalart-Allmaras, k-ε, k-ε RNG and k-ω SST). From the conducted study, it is confirmed the ability of analysis of a HAWT rotor flow field with the RANS equations and the good agreement of the computations with experimental data, when the k-ω SST turbulence model is used. The aeroacoustic analysis of the HAWT is based on the solution of the Ffowcs Williams-Hawkings (FW-H) equation via a computer code developed for this purpose. The radiation patterns of the calculated aeroacoustic noise show that high level amplitudes are calculated for upwind and downwind positions.
125

Modélisation des systèmes éoliens verticaux intégrés aux bâtiments : modélisation du couple production / Bâtiment / Modeling of vertical axis wind systems integrated into buildings : modeling of coupling between Production / Buildings

Jaohindy, Placide 20 August 2012 (has links)
La technique d'intégration des systèmes éoliens verticaux (VAWT) au service des logements individuels, collectifs et tertiaires est une approche intéressante pour les acteurs de la maitrise d'énergie pour promouvoir une utilisation rationnelle de l'énergie. Le choix de l'implantation d'une éolienne en milieu urbain est déterminé par la hauteur des bâtiments, la vitesse du vent et l'intensité de turbulence du site. Les conditions de vents sévères à faible altitude sont favorables à une implantation de VAWT. Dans certaines villes, la hauteur moyenne des bâtiments est relativement faible et ceci fait qu'en ces lieux, les VAWTs sont appréciables par rapport aux HAWTs. La mécanique des fluides numériques (CFD) est mise en œuvre pour modéliser les écoulements d'air au travers d'éoliennes et des bâtiments. Un problème CFD modélisé avec un modèle de turbulence approprié donneront des résultats de simulations qui s'approcheront des réalités physiques et des résultats de l'expérimentation. Dans cette étude, les modèles standard k-" et SST k-! ont été utilisés. Après analyse des possibilités d'intégration d'une VAWT, la toiture reste la zone d'intégration la plus intéressante. En plus de l'étude aérodynamique, nous avons entamé une modélisation électrique de la chaîne de conversion de l'éolienne en utilisant le logiciel Matlab/Simulink. Le travail a été effectué dans le but de déterminer la puissance électrique susceptible d'être produite par l'éolienne. Pour finaliser cette étude, un modèle de couplage électrique de VAWTs avec un bâtiment considéré comme un modèle de charge est présenté. / The building integration of the vertical axis wind turbine (VAWT) to supply the individual, collective and tertiary residences consumption is an interesting approach that can help architects and the actors of the energy control to promote a rational use of renewable energy in the in homes. The choice of the location of the urban wind turbine type is determined by building height, wind speed and turbulence intensity of the site. The severe conditions of wind at low altitude are favorable for a VAWT installation. In some cities, the average buildings height is low, in these places, the VAWTs must be appreciable compared to the HAWTs. The modelling of the air flow through the wind turbine and the couple building-wind turbine involves the computation fluid dynamics (CFD). A problem modeled with a suitable turbulence model will give results that approach the physical reality and the experiment results. In this study, the standard k-" and SST k-! models were used. After analyzing the possibilities of VAWT integration, the roof is the most interesting integration area. In addition to CFD method, we have started to study the electrical model of the VAWT. The work was conducted to determine the electrical power generated by the wind turbine using Matlab/Simulink software. To complete the study, a VAWT model coupled with a building where the building is considered as a consumption model is presented.
126

Simulation and analysis of wind turbine loads for neutrally stable inflow turbulence

Sim, Chungwook 2009 August 1900 (has links)
Efficient temporal resolution and spatial grids are important in simulation of the inflow turbulence for wind turbine loads analyses. There have not been many published studies that address optimal space-time resolution of generated inflow velocity fields in order to estimate accurate load statistics. This study investigates turbine extreme and fatigue load statistics for a utility-scale 5MW wind turbine with a hub-height of 90 m and a rotor diameter of 126 m. Load statistics, spectra, and time-frequency analysis representations are compared for various alternative space and time resolutions employed in inflow turbulence field simulation. Conclusions are drawn regarding adequate resolution in space of the inflow turbulence simulated on the rotor plane prior to extracting turbine load statistics. Similarly, conclusions are drawn with regard to what constitutes adequate temporal filtering to preserve turbine load statistics. This first study employs conventional Fourier-based spectral methods for stochastic simulation of velocity fields for a neutral atmospheric boundary layer. In the second part of this study, large-eddy simulation (LES) is employed with similar resolutions in space and time as in the earlier Fourier-based simulations to again establish turbine load statistics. A comparison of extreme and fatigue load statistics is presented for the two approaches used for inflow field generation. The use of LES-generated flows (enhanced in deficient high-frequency energy by the use of fractal interpolation) to establish turbine load statistics in this manner is computationally very expensive but the study is justified in order to evaluate the ability of LES to be used as an alternative to more common approaches. LES with fractal interpolation is shown to lead to accurate load statistics when compared with stochastic simulation. A more compelling reason for using LES in turbine load studies is the following: for stable boundary layers, it is not possible to generate realistic inflow velocity fields using stochastic simulation. The present study presents a demonstration that, despite the computational costs involved, LES-generated inflows can be used for loads analyses for utility-scale turbines. The study sets the stage for future computations in the stable boundary layer where low-level jets, large speed and direction shears across the rotor, etc. can possibly cause large turbine loads; then, LES will likely be the inflow turbulence generator of choice. / text
127

Commandes non linéaires robustes de systèmes éoliens / Nonlinear robust control of wind turbines systems

Guenoune, Ibrahim 08 February 2018 (has links)
Le travail de cette thèse s’inscrit dans la commande non linéaire des structures éoliennes. Le premier objectif de cette thèse est la commande d’une éolienne standard fonctionnant à vitesse et angle de calage variables. Les stratégies de commande proposées permettant de commander l’éolienne dans des zones de fonctionnement différentes (optimisation et limitation de la puissance produite). Le deuxième objectif consiste en la conception de commande d’une nouvelle structure d’éolienne à double rotor. L’originalité de cette structure réside dans le fait qu’elle peut pivoter face au vent sans actionneur dédié, et ce grâce à la rotation libre du bras portant les deux éoliennes. Deux architectures de commande sont proposées afin d’orienter la structure face au vent : l’une crée un différentiel des angles de calage des pales des deux éoliennes, l’autre agissant via la différence de puissance produite par les deux génératrices. Étant donné que l’environnement est incertain et fortement perturbé (variations du vent, erreurs de modélisation, bruits de mesure), des lois de commande non linéaires robustes sont proposées. L’efficacité des stratégies de commande a été vérifiée selon différents scénarios. / This work deals the nonlinear control of wind turbine structures. The first objective is the design of control laws of a standard wind turbine with variable speed-variable pitch angle. The proposed control strategies allow controlling the wind turbine indifferent operating areas (optimization and powerlimitation).The second objective consists in controlling a new structure of twin wind turbines. The originality of this structure lies in the fact that it can rotate face the wind without using a dedicated actuator, thanks to the free rotation of the arm carrying the wind turbines. Two control architectures are proposed in order to ensure the structure face the wind : pitch angles differential and the produced power difference. Given that the environment is uncertain (windvariations, modeling errors, noise), robust nonlinear control laws are proposed for a multiple objectives. The efficiency of the control strategies have been carried out according to several scenarios.
128

Detection and removal of wind turbine ice : Method review and a CFD simulation test

Bravo Jimenez, Ismael January 2018 (has links)
Nowadays, the energy sector is facing a huge demand that needs to be covered. Wind energy is one of the most promising energy resources as it is free from pollution, clean and probably will arise as one of the main energy sources to prevent global warming from happening. Almost 10% of the global energy demand is coming from renewable resources. By 2050 this percentage is expected to grow to 60%. Therefore, efforts on wind turbine technology (i.e. reliability, design…) need to be coped with this growth. Currently, large wind energy projects are usually carried out in higher altitudes and cold climates. This is because almost all of the cold climates worldwide offer profitable wind power resources and great wind energy potential. Operating with wind turbines in cold climates bring interesting advantages as a result of higher air density and consequently stronger winds (wind power is around 10% higher in the Nordic regions). Not only benefits can be obtained but extreme conditions force to follow harsh conditions. Low temperatures and ice accretion present an important issue to solve as can cause several problems in fatigue loads, the balance of the rotor and aerodynamics, safety risks, turbine performance, among others. As wind energy is growing steadily on icy climates is crucial that wind turbines can be managed efficiently and harmlessly during the time they operate. The collected data for the ice detection, de-icing and anti-icing systems parts was obtained through the company Arvato Bertelsmann and is also based on scientific papers. In addition, computer simulations were performed, involving the creation of a wind tunnel under certain conditions in order to be able to carry out the simulations (1st at 0ºC, 2nd at -10ºC) with the turbine blades rotating in cold regions as a standard operation. In this project, Computational Fluids Dynamics (CFD) simulation on a 5MW wind turbine prototype with ice accretion on the blades to study how CL and CD can change, also different measures of ice detection, deicing and anti-icing systems for avoiding ice accumulation will be discussed. Simulation results showed a logical correlation as expected, increasing the drag force about 5.7% and lowering the lift force 17,5% thus worsening the turbine's efficiency.
129

Aerodynamický návrh větrné turbíny pro zvolenou lokalitu / Aerodynamic design of wind turbine

Chromec, Tomáš January 2014 (has links)
This master‘s thesis focuses on wind turbines. The first part describes the basic attributes of wind energy and wind turbines and is accompanied by a many images. The next section is a statistical processing of measured meteorological data from measuring stations of the Czech Hydrometeorological Institute. These data are then used for calculations of the blades of wind turbines. The calculations are carried by two different methods. The first method is called the blade element momentum theory, the second method is the theory of blade cascade. Using these methods are obtained by two different blades. The last section compares the two blades in terms of geometric and performance.
130

Analysis of Near-Surface Relative Humidity in a Wind Turbine Array Boundary Layer Using an Instrumented Unmanned Aerial System and Large-Eddy Simulation

Adkins, Kevin Allan 11 August 2017 (has links)
Previous simulations have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing of momentum, heat and moisture. These changes alter downstream atmospheric properties. With the exception of a few observational data sets that focus on the impact to near-surface temperature within wind farms, little to no observational evidence exists with respect to vertical mixing. These few experimental studies also lack high spatial resolution due to their use of a limited number of meteorological sensors or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather high resolution in-situ field measurements from two state-of-the-art Midwest wind farms in order to differentially map downstream changes to relative humidity. These measurements are complemented by numerical experiments conducted using large eddy simulation (LES). Observations and numerical predictions are in good general agreement around a single wind turbine and show that downstream relative humidity is altered in the vertical, lateral, and downstream directions. A suite of LES is then performed to determine the effect of a turbine array on the relative humidity distribution in compounding wakes. In stable and neutral conditions, and in the presence of a positive relative humidity lapse rate, it is found that the humidity decreases below the turbine hub height and increases above the hub height. As the array is transitioned, the magnitude of change increases, differentially grows on the left-hand and right-hand side of the wake, and move slightly upward with downstream distance. In unstable conditions, the magnitude of near-surface decrease in relative humidity is a full order of magnitude smaller than that observed in a stable atmospheric regime.

Page generated in 0.0593 seconds