• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 61
  • 34
  • 22
  • 12
  • 10
  • 10
  • 9
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 522
  • 522
  • 173
  • 151
  • 84
  • 64
  • 63
  • 54
  • 48
  • 48
  • 45
  • 44
  • 41
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

An Evaluation Testbed for Alternative Wind Turbine Blade Tip Designs

Gertz, Drew Patrick January 2011 (has links)
The majority of present-day horizontal axis wind turbine blade tips are simple designs based on historical trends. There is, however, some evidence that varying the design of the tip can result in significant changes in performance characteristics such as power output, noise, and structural loading. Very few studies have tested this idea on an actual rotating blade and there is much to be investigated. Thus, a project was devised to examine experimentally the effect of various tip designs on an operational rotating wind turbine rotor. A tapered, twisted blade 1.6 m in length was custom designed for use in the UW Wind Energy Research Facility using the blade element momentum (BEM) method. A coupling mechanism was designed such that the outer 10% of each blade could be exchanged to evaluate the effect of different tip designs. A set of three blades was fabricated out of fibre-reinforced plastic, while the tips were machined out of maple wood on a CNC milling machine. The blade was evaluated with a standard rectangular tip to establish baseline performance against which to compare the alternative tip configurations. The three-bladed rotor was tested at shaft speeds from 100 rpm to 240 rpm in wind speeds up to the facility maximum of 11.1 m/s. The rotor was found to have a maximum power coefficient of 0.42 at a tip speed ratio of 5.3 and a 1.45 kW rated power at a wind speed of 11 m/s. The performance was compared to predictions made using the BEM method with airfoil data generated using a modified Viterna method and the Aerodas method. While the Aerodas data was capable of predicting the power fairly accurately from 5 m/s to 10 m/s, the modified Viterna method predicted the entire curve much more accurately. Two winglet designs were also tested. The first (called Maniaci) was designed by David Maniaci of Pennsylvania State University and the other (called Gertz) was designed by the author. Both winglets were found to augment the power by roughly 5% at wind speeds between 6.5 m/s and 9.5 m/s, while performance was decreased above and below this speed range. It was calculated that the annual energy production could be increased using the Maniaci and Gertz winglets by 2.3% and 3%, respectively. Considering the preliminary nature of the study the results are encouraging and it is likely that more optimal winglet designs could be designed and evaluated using the same method. More generally, this study proved that the blades with interchangeable tips are capable of being used as an evaluation testbed for alternative wind turbine blade tip designs.
172

The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steels

Yang, Yongxu 21 October 2008 (has links)
Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized. In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy. It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.
173

Experimental Verification for the Independently Controllable Transmission Mechanisms

Lin, Chung-chi 21 February 2011 (has links)
In current years, renewable energy is an important topic due to the energy crisis and the environments protection issue. One of the renewable energies, wind power has the advantage of high popular rate, convenient, and clear. But there are disadvantages can be improved. The generator has a low quality of output because the variety of wind speed, and it needs electronic equipment to maintain the quality of energy output. According to the research results of Dr. Hwang, using the independently controllable transmission mechanisms that has a controllable output could improve the quality of generator output in Wind Turbines. In this study, the tests platform of independently controllable transmission mechanisms will be fabricated. And analysis the kinematics and dynamics by experimental results to demonstrate the feasibility in wind turbine applications of independently controllable transmission mechanisms.
174

Power Flow Analysis on the Dual Input Transmission Mechanisms of Wind Turbine Systems

Hsiao, Hsien-yu 21 July 2011 (has links)
Two parallel planetary gear trains design are proposed to construct a dual input transmission mechanism system used in small power wind turbine systems. The time varied input wind powers are applied in the system with specified speed and torque. The Dynamic power flow variation in gear pairs are modeled and simulated in this work. Results indicate the proposed planetary gear train system is feasible in wind turbine system. The effect of gear train parameters on the operation safety and life will also be studied. The dynamic torque equilibrium equations between meshed gear pairs are employed to model the dynamic torque flow in this proposed dual input gear system. The nonlinear behavior of a synchronous generator has also included in the modeling. The dynamic responses of the dual input transmission mechanism system are simulated by using the 4th order Runge-Kutta method. The effect of system parameters used in this wind turbine system, i.e. the wind speed, the magnetic flux synchronous generator, the inertia flywheels, on the output electrical power variation have investigated in this study. The strength analyses of gear pairs with the bending fatigue and surface durability consideration have also studied in this work.
175

Vibration and Structural Response of Hybrid Wind Turbine Blades

Nanami, Norimichi 2010 December 1900 (has links)
Renewable energy is a serious alternative to deliver the energy needs of an increasing world population and improve economic activity. Wind energy provides better environmental and economic benefits in comparison with the other renewable energy sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional to the square of the blade length and the cube of the wind speed, wind turbine size has grown rapidly in the last two decades to match the increase in power output. As the blade length increases, so does its weight opening up design possibilities to introduce hybrid glass and carbon fiber composite materials as lightweight structural load bearing alternatives. Herein, we investigate the feasibility of introducing modular composite tubulars as well as hybrid sandwich composite skins in the next generation blades. After selecting a target energy output, 8 MW with 80 m blade, airfoil geometry and the layup for the skin as well as internal reinforcements are proposed. They are incorporated into the computational blade via linear shell elements for the skin, and linear beam elements for the composite tubulars to assess the relationship between weight reduction and structural performance. Computational simulations are undertaken to understand the static and dynamic regimes; specifically, displacements, stresses, and vibration modes. The results showed that the composite layers did not exhibit any damage. However, in the balsa core of the sandwich skin, the von Mises stress exceeded its allowable at wind speeds ranging from 11.0 m/sec to 12.6 m/sec. In the blades with composite tubular reinforcement, two different types of damage are observed: a. Stress concentrations at the tubular-skin attachments, and b. Highest von Mises stress caused by the flapping bending moment. The vibration studies revealed a strong coupling mode, bending and twist, at the higher natural frequencies of the blade with tubular truss configuration. The weight saving measures in developing lighter blades in this study did not detract from the blades structural response for the selected load cases.
176

Simulation and Optimization of Wind Farm Operations under Stochastic Conditions

Byon, Eunshin 2010 May 1900 (has links)
This dissertation develops a new methodology and associated solution tools to achieve optimal operations and maintenance strategies for wind turbines, helping reduce operational costs and enhance the marketability of wind generation. The integrated framework proposed includes two optimization models for enabling decision support capability, and one discrete event-based simulation model that characterizes the dynamic operations of wind power systems. The problems in the optimization models are formulated as a partially observed Markov decision process to determine an optimal action based on a wind turbine's health status and the stochastic weather conditions. The rst optimization model uses homogeneous parameters with an assumption of stationary weather characteristics over the decision horizon. We derive a set of closed-form expressions for the optimal policy and explore the policy's monotonicity. The second model allows time-varying weather conditions and other practical aspects. Consequently, the resulting strategy are season-dependent. The model is solved using a backward dynamic programming method. The bene ts of the optimal policy are highlighted via a case study that is based upon eld data from the literature and industry. We nd that the optimal policy provides options for cost-e ective actions, because it can be adapted to a variety of operating conditions. Our discrete event-based simulation model incorporates critical components, such as a wind turbine degradation model, power generation model, wind speed model, and maintenance model. We provide practical insights gained by examining di erent maintenance strategies. To the best of our knowledge, our simulation model is the rst discrete-event simulation model for wind farm operations. Last, we present the integration framework, which incorporates the optimization results in the simulation model. Preliminary results reveal that the integrated model has the potential to provide practical guidelines that can reduce the operation costs as well as enhance the marketability of wind energy.
177

Terrain Modeling And Atmospheric Turbulent Flowsolutions Based On Meteorological Weather Forecast Data

Leblebici, Engin 01 February 2012 (has links) (PDF)
In this study, atmospheric and turbulent flow solutions are obtained using meteorological flowfield and topographical terrain data in high resolution. The terrain topology of interest, which may be obtained in various resolution levels, is accurately modeled using structured or unstructured grids depending on whether high-rise building models are present or not. Meteorological weather prediction software MM5, is used to provide accurate and unsteady boundary conditions for the solution domain. Unsteady turbulent flow solutions are carried out via FLUENT with the help of several User Defined Functions developed. Unsteady flow solutions over topographical terrain of METU campus are computed with 25m x 25m x 15m resolution using structured grids. These FLUENT solutions are compared with the MM5 solutions. Also, the accuracy of the boundary layer velocity profiles is assessed. Finally, effects of surface roughness model extracted from MM5 for the region of interest is investigated. In addition, unsteady flow solutions over METU campus are repeated in presence of high-rise building models using unstructured grids with resolution varying from 5 meters around buildings to 80 meters further away. The study shows that unsteady, turbulent flow solutions can be accurately obtained using low resolution atmospheric weather prediction models and high resolution Navier-Stokes solutions over topographical terrains.
178

Advanced CFD methods for wind turbine analysis

Lynch, Charles Eric 19 January 2011 (has links)
Horizontal-axis wind turbines operate in a complex, inherently unsteady aerodynamic environment. The flow over the blades is dominated by 3-D effects, particularly during stall, which is accompanied by massive flow separation and vortex shedding. There is always bluff-body shedding from the turbine nacelle and support structure which interacts with the rotor wake. In addition, the high aspect ratios of wind turbine blades make them very flexible, leading to substantial aeroelastic deformation of the blades, altering the aerodynamics. Finally, when situated in a wind farm, turbines must operate in the unsteady wake of upstream neighbors. Though computational fluid dynamics (CFD) has made significant inroads as a research tool, simple, inexpensive methods, such as blade element momentum theory, are still the workhorses in wind turbine design and aeroelasticity applications. These methods are unable to accurately predict rotor loads near the edges of the operating envelope. In this work, a range of unstructured grid CFD techniques for predicting wind turbine loads and aeroelasticity has been developed and applied to the NREL Unsteady Aerodynamics Experiment Phase VI rotor. First, a kd-tree based nearest neighbor search algorithm was used to improve the computational efficiency of an approximate unsteady actuator blade method. This method was then shown to predict root and tip vortex locations and strengths similar to an overset method, but without the computational expense of modeling the blade surfaces. A hybrid Reynolds-averaged Navier-Stokes / Large Eddy Simulation (HRLES) turbulence model was extended to an unstructured grid framework and demonstrated to improve predictions of unsteady loading and shedding frequency in massively separated cases. For aeroelastic predictions, a methodology for tight coupling between an unstructured CFD solver and a computational structural dynamics tool was developed. Finally, time-accurate overset rotor simulations of a complete turbine---blades, nacelle, and tower---were conducted using both RANS and HRLES turbulence models. The HRLES model was able to accurately predict rotor loads when stalled. In yawed flow, excellent correlations of mean blade loads with experimental data were obtained across the span, and wake asymmetry and unsteadiness were also well-predicted.
179

A Comparison of Wind Power Production with Three Different De- and Anti-Icing Systems

Kolar, Sandra January 2015 (has links)
This thesis is done within the master program in energy systems engineering at Uppsala University and in cooperation with OX2. The aim was to compare the operation and performance of three different de- and anti-icing systems for wind turbines during the winter 2014/2015. The systems evaluated were de-icing with heating resistances, de-icing with warm air and anti-icing with heating resistances. Inconsistency in the operation of the wind turbines and the systems as well as lack of information made it hard to compare the efficiencies of the systems. The systems showed tendencies to improve the production. Especially examples during single ice events where the systems increased the power output were found, but the examples also showed possible improvements regarding the size of the systems and the duration of the de-or anti-icing cycles. Based on the approximated gain in production, during the studied time period, none of the systems could be determined to be profitable. The gain in production does however not have to be especially large for the systems to become profitable, and the results could be very different in a year with more ice, higher electricity prices or a more consistent operation of the systems. Important characteristics of the systems were found to be the duration of a cycle, the energy required for the operation of the system and the trigger-point for activation of the system. Additional benefits like for instance decreased loads, risk for standstill and ice throws could also be provided by the system.
180

Design strategies for rotorcraft blades and HALE aircraft wings applied to damage tolerant wind turbine blade design

Richards, Phillip W. 08 June 2015 (has links)
Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. Smart loads management (controls) are investigated for their potential to increase the fatigue life of damaged offshore wind turbine rotor blades. This study will consider two commonly encountered damage types for wind turbine blades, the trailing edge disbond (bond line failure) and shear web disbond, and show how 3D finite element modeling can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. Modern wind turbine blades are advanced composite structures, and blade optimization problems can be complex with many structural design variables and a wide variety of aeroelastic design requirements. The multi-level design method is an aeroelastic structural design technique for beam-like structures in which the general design problem is divided into a 1D beam optimization and a 2D section optimization. As a demonstration of aeroelastic design, the multi-level design method is demonstrated for the internal structural design of a modern composite rotor blade. Aeroelastic design involves optimization of system geometry features as well as internal features, and this is demonstrated in the design of a flying wing aircraft. Control methods such as feedback control also have the capability alleviate aeroelastic design requirements and this is also demonstrated in the flying wing aircraft example. In the case of damaged wind turbine blades, load mitigation control strategies have the potential to mitigate the effects of damage, and allow partial operation to avoid shutdown. The load mitigation strategies will be demonstrated for a representative state-of-the-art wind turbine (126m rotor diameter). An economic incentive will be provided for the proposed operations strategies, in terms of weighing the cost and risk of implementation against the benefits of increased revenue due to operation of damaged turbines. The industry trend in wind turbine design is moving towards very large blades, causing the basic design criterion to change as aeroelastic effects become more important. An ongoing 100 m blade (205 m rotor diameter) design effort intends to investigate these design challenges. As a part of that effort, this thesis will investigate damage tolerant design strategies to ensure next-generation blades are more reliable.

Page generated in 0.1116 seconds