• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 45
  • 17
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 228
  • 80
  • 59
  • 44
  • 28
  • 23
  • 22
  • 22
  • 20
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Couplage modal pour la reproduction de la cinématique d'une aile d'insecte et la génération de portance d'un nano-drone bio-inspiré / Modes coupling to reproduce insect wing kinematics and generate lift with a bio inspired nano-air vehicle

Faux, Damien 19 February 2018 (has links)
Cette recherche dans le domaine des nano-drones a pour ambition de concevoir un objet volant de taille réduite s’inspirant directement de la nature.Dans ce but, un état de l’art a été fait sur les mécanismes de vol des insectes ainsi que sur l’ensemble des solutions à ailes battantes artificielles développées à ce jour. Il ressort de cette analyse d’une part, que les insectes ont une cinématique des ailes singulière reposant sur un mouvement de battement et de torsion en quadrature de phase et d’autre part, que les nano-drones actuels ne s’appuient pas ou très peu sur le comportement dynamique de leurs ailes artificielles pour générer de la portance. Le concept proposé dans le cadre de ce travail se veut en rupture avec ces approches. Il consiste en un couplage vibratoire en quadrature de phase de modes de battement et de torsion appliqué sur des ailes artificielles flexibles afin de reproduire une cinématique proche de celles des insectes avec un unique actionneur. La méthodologie employée s’est traduite par l’élaboration d’un modèle analytique négligeant les efforts aérodynamiques afin de calculer le comportement dynamique et de dimensionner la structure du nano-drone. Les simulations ont mis en évidence l’existence de modes propres de la structure des ailes dont les déformées correspondent aux mouvements de battement et de torsion recherchés. Fait remarquable, une optimisation a permis de rapprocher les fréquences de ces modes tout en conservant une amplitude suffisante de façon à réaliser leur couplage et donc à reproduire la cinématique souhaitée. La portance produite a été ensuite estimée à l’aide d’un modèle aéroélastique qui a montré que le maximum de portance était obtenu pour deux fréquences coïncidant avec une quadrature de phase entre les deux modes. Ces résultats ont par la suite été confirmés à l’aide de mesures expérimentales effectuées sur un banc de mesure spécifique répondant aux contraintes imposées par les prototypes en termes de sensibilité et de comportement dynamique. Les différentes générations de prototypes testées ont été fabriquées au moyen des procédés de microfabrication, ce qui a permis l’intégration d’une membrane d’aile en parylène d’une épaisseur tout à fait comparable à celle existant chez les insectes. La conclusion de cette étude est que nous disposons dorénavant d’un prototype capable de compenser son poids. / This work in the Nano-Air Vehicle field aims to design a small flying object directly inspired by the nature. For this purpose, a state of the art has been performed on insects flight mecanisms and has reviewed the overall artificial flapping wings solutions developped until today. The result of this analysis is on one hand, that insects use a specific wing kinematics which relies on a flapping motion and a twisting motion coupled in a quadrature phase shift and on the other hand, that the existing Nano-Air Vehicles do not exploit the dynamic behavior of their artificial wings to produce lift. The proposed concept in this research is a departure from those other works. It consists of a vibratory coupling in a quadrature phase shift of a flapping and a twisting mode applied on flexible artificial wings in order to reproduce a kinematics close to the insects ones with a single actuator. The used methodology resulted in the development of an analytic modeling which neglects the aerodynamic forces to calculate the dynamic behavior and dimension the prototype structure. Simulations highlighted the existence of eigen modes of the wings structure whose modal shapes match with the wanted flapping and twisting motion. Noteworthy fact, an optimization allowed to get those modes close in frequency while keeping a non-neglectible amplitude in such a way as to couple them and obtain the expected kinematics. The produced lift force is then estimated with an aeroelastic modeling which has shown that the maximum lift is obtained for two frequencies which provide a quadrature phase shift between the two modes. Those results are then validated by experimental measurements performed on a specific bench made according to the constraints due to the prototype in terms of sensitivity and dynamic behavior. The different generations of prototypes tested are produced with microfabrication process, allowing to integrate a wing membrane in parylene with a thickness comparable to the one existing in insects. The conclusion of this study is that we now have a prototype able to compensate its weight.
132

Computational Fluid Dynamics Simulations of Oscillating Wings and Comparison to Lifting-Line Theory

Keddington, Megan 01 May 2015 (has links)
Computational fluid dynamics (CFD) analysis was performed in order to compare the solutions of oscillating wings with Prandtl’s lifting-line theory. Quasi-steady and steady-periodic simulations were completed using the CFD software Star-CCM+. The simulations were performed for a number of frequencies in a pure plunging setup. Additional simulations were then completed using a setup of combined pitching and plunging at multiple frequencies. Results from the CFD simulations were compared to the quasi-steady lifting-line solution in the form of the axial-force, normal-force, power, and thrust coefficients, as well as the efficiency obtained for each simulation. The mean values were evaluated for each simulation and compared to the quasi-steady lifting-line solution. It was found that as the frequency of oscillation increased, the quasi-steady lifting-line solution was decreasingly accurate in predicting solutions.
133

Gender in English Language and EFL-   Textbooks

Mustedanagic, Anita January 2010 (has links)
<p> </p><p><strong>Abstract</strong></p><p>A textbook is a key component in the arsenal of a teacher of English. For this reason, it is of importance that textbooksused in Swedish schools are compliant with the fundamental values of equality, provided in the LPO 94. I will attempt to discover the extent to which English textbooks present males and females in non-stereotyped ways and as equal. I want to provide an overview to show how they deal with gender issues. In addition, I aim at establish whether there are any connection between learning and gender, and whether it hinders the pupil’s language learning.</p><p>My analysis will draw on previous research  and theories presented by prominent figures in the field, such as, Butler (1990), Mills (1995), Renner (1997), Ravitch (2004) and Jones, Kitetu & Jane Sunderland (1997)among others. Thereafter, these theories, and my own research will be compared, to and contrasted with the guidelines from the Swedish National Agency of Education.</p><p>This dissertation comprises a qualitative critical discourse analysis of two randomly selected textbooks that have been, or are being used, in Swedish secondary schools. For my study, I have chosen <em>Team 8</em> (1984) and <em>Wings 8</em> (2000).</p><p>In my analyses, a number of different aspects will be taken into consideration, such as the   gender distribution of narrators, main characters and sub characters, as well as the   description of gender/gender roles, and the representation of gender in illustrations. Further, I will study what kind of language is used: the extent to which it is gendered or de-gendered language.  These aspects will be collected quantitatively.</p><p>The findings from the analysis show that the language in <em>Wings 8</em> gives a broad and non-stereotypic view of gender roles, which is in accordance with the fundamental values of LPO 94. However, the illustrations tend to portray males and females in what can be considered as quite stereotypical.</p><p><em>Team 8</em>, on the other hand, contains gendered language and male dominance; women were placed in the background or left out completely.  Therefore, <em>Team 8 </em>would not be deemed to be compliant with<em> the </em>requirements set by the Swedish National Agency of Education today.</p><p> </p><p><strong>Key words:</strong> Education, teaching material, Wings, Team 8, gender, critical discourse analysis.</p>
134

Examining the Nature of Epistasis between wupA and for Incomplete Dominance at wupA and epistatic Interactions with for Alleles give Rise to a Gradient Effect in Foraging Behaviour

Meese-Tamuri, Saira 23 July 2012 (has links)
Foraging behaviour in Drosophila melanogaster larvae is influenced by natural allelic variation in the foraging (for) gene that encodes a cyclic GMP – dependent protein Kinase (PKG), such that rovers (forR) traverse greater distances while foraging than sitters (fors). Foraging behaviour is also influenced by natural allelic variation in the wings up A (wupA) gene that encodes the Troponin-I protein (TnI). Specifically, wupAlow allele suppresses the dominance of the forR allele, turning rovers into sitters. The dominance of the natural wupA alleles and their interactions with allelic combinations in for has not been characterized. I conducted various crosses and found that wupA alleles exhibit incomplete dominance. More importantly, I found that allelic combinations of wupA and for gave rise to a range in larval foraging behaviour. In this study, I propose that this gradient effect in foraging behaviour is due to variation in levels of PKG activity and TnI phosphorylation potential.
135

Examining the Nature of Epistasis between wupA and for Incomplete Dominance at wupA and epistatic Interactions with for Alleles give Rise to a Gradient Effect in Foraging Behaviour

Meese-Tamuri, Saira 23 July 2012 (has links)
Foraging behaviour in Drosophila melanogaster larvae is influenced by natural allelic variation in the foraging (for) gene that encodes a cyclic GMP – dependent protein Kinase (PKG), such that rovers (forR) traverse greater distances while foraging than sitters (fors). Foraging behaviour is also influenced by natural allelic variation in the wings up A (wupA) gene that encodes the Troponin-I protein (TnI). Specifically, wupAlow allele suppresses the dominance of the forR allele, turning rovers into sitters. The dominance of the natural wupA alleles and their interactions with allelic combinations in for has not been characterized. I conducted various crosses and found that wupA alleles exhibit incomplete dominance. More importantly, I found that allelic combinations of wupA and for gave rise to a range in larval foraging behaviour. In this study, I propose that this gradient effect in foraging behaviour is due to variation in levels of PKG activity and TnI phosphorylation potential.
136

The Effect of Wing Damage on Aeroelastic Behavior

Conyers, Howard J. January 2009 (has links)
<p>Theoretical and experimental studies are conducted in the field of aeroelasticity. Specifically, two rectangular and one cropped delta wings with a hole are analyzed in this dissertation for their aeroelastic behavior.</p><p>The plate-like wings are modeled using the finite element method for the structural theory. Each wing is assumed to behave as a linearly elastic and isotropic, thin plate. These assumptions are those of small-deflection theory of bending which states that the plane sections initially normal to the midsurface remain plane and normal to that surface after bending. The wings are modeled in low speed flows according to potential flow theory. The potential flow is governed by the aerodynamic potential equation, a linear partial differential equation. The aerodynamic potential equation is solved using a distribution of doublets that relates pressure to downwash in the doublet lattice method. A hole in a wing-like structure is independently investigated theoretically and experimentally for its structural and aerodynamic behavior.</p><p>The aeroelastic model couples the structural and aerodynamic models using Lagrange's equations. The flutter boundary is predicted using the V-g method. Linear theoretical models are capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests. Along with flutter prediction, a brief survey on gust response and the addition of stores(missile or fuel tanks) are examined.</p> / Dissertation
137

Prediction of Circulation Control Performance Characteristics for Super STOL and STOL Applications

Naqvi, Messam Abbas 22 August 2006 (has links)
The rapid air travel growth during the last three decades, has resulted in runway congestion at major airports. The current airports infrastructure will not be able to support the rapid growth trends expected in the next decade. Changes or upgrades in infrastructure alone would not be able to satisfy the growth requirements, and new airplane concepts such as the NASA proposed Super Short Takeo and Landing and Extremely Short Takeo and Landing (ESTOL) are being vigorously pursued. Aircraft noise pollution during Takeoff and Landing is another serious concern and efforts are aimed to reduce the airframe noise produced by Conventional High Lift Devices during Takeoff and Landing. Circulation control technology has the prospect of being a good alternative to resolve both the aforesaid issues. Circulation control airfoils are not only capable of producing very high values of lift (Cl values in excess of 8.0) at zero degree angle of attack, but also eliminate the noise generated by the conventional high lift devices and their associated weight penalty as well as their complex operation and storage. This will ensure not only satisfying the small takeoff and landing distances, but minimal acoustic signature in accordance with FAA requirements. The Circulation Control relies on the tendency of an emanating wall jet to independently control the circulation and lift on an airfoil. Unlike, conventional airfoil where rear stagnation point is located at the sharp trailing edge, circulation control airfoils possess a round trailing edge, therefore the rear stagnation point is free to move. The location of rear stagnation point is controlled by the blown jet momentum. This provides a secondary control in the form of jet momentum with which the lift generated can be controlled rather the only available control of incidence (angle of attack) in case of conventional airfoils. The use of Circulation control despite its promising potential has been limited only to research applications due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy metamodels has been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces and moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff and Landing performance were compared with the optimal configurations obtained by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a tradeoff analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL and STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling and simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.
138

Stability-constrained Aerodynamic Shape Optimization with Applications to Flying Wings

Mader, Charles 30 August 2012 (has links)
A set of techniques is developed that allows the incorporation of flight dynamics metrics as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability derivatives. Based on the characteristics of the two methods, the time-spectral technique is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
139

An investigation of the strength of an aircraft wing bolt with a centrally drilled hole.

Francis, Daniel. January 2000 (has links)
The investigation contained herein is a part of a larger, long-term project: The Development of SMART Aircraft Bolts. Structural failures, at highly stressed components, arc common in some of the aircraft used by the South African Air force. The strength of one such component, the wing bolts on the C-130 aircraft, is analysed and compared to the stress distribution in a bolt which has a small hole drilled through the centre of the bolt (which will be used to insert a sensing device). The results of this analysis will be used as input into further phases of the project, e.g., SMART material selection and the development of sensing devices. Due to the complex physics of a bolted joint, advanced analysis of the bolt under conservative loading was performed, after conducting thorough research into bolted joint design and analysis methods, in order to provoke the final recommendations. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
140

CONSTRAINED VOLUME PACKING OF DEPLOYABLE WINGS FOR UNMANNED AIRCRAFT

Harris, Turner John 01 January 2011 (has links)
UAVs are becoming an accepted tool for sensing. The benefits of deployable wings allow smaller transportation enclosures such as soldier back packs up to large rocket launched extraterrestrial UAVs. The packing of soft inflatable wings and Hybrid inflatable with rigid section wings is being studied at the University of Kentucky. Rigid wings are volume limited while inflatable wings are mass limited. The expected optimal wing design is a hybrid approach. Previous wing designs have been packed into different configurations in an attempt to determine the optimal stowed configurations. A comparison of rigid, hybrid, and inflatable wings will be presented. Also a method for simulating optimally packed wings with respect to geometric constraints will be presented. A code has been written to study soft wing packing and verified the soft wing packing results. This code can be used during initial wing design to help predict wing size and packing configurations. In this thesis, an over view of the packing configurations as well as packing observations will be covered such , packing inefficiencies, wing mounting limits, long term storage, and scaling of packing.

Page generated in 0.092 seconds