Spelling suggestions: "subject:"aireless LANS."" "subject:"fireless LANS.""
271 |
Advanced techniques to improve the performance of OFDM Wireless LANSegkos, Michail 06 1900 (has links)
Approved for public release; distribution is unlimited / OFDM systems have experienced increased attention in recent years and have found applications in a number of diverse areas including telephone-line based ADSL links, digital audio and video broadcasting systems, and wireless local area networks (WLAN). Orthogonal frequency-division multiplexing (OFDM) is a powerful technique for high data-rate transmission over fading channels. However, to deploy OFDM in a WLAN environment, precise frequency synchronization must be maintained and tricky frequency offsets must be handled. In this thesis, various techniques to improve the data throughput of OFDM WLAN are investigated. A simulation tool was developed in Matlab to evaluate the performance of the IEEE 802.11a physical layer. We proposed a rapid time and frequency synchronization algorithm using only the short training sequence of the IEEE 802.11a standard, thus reducing the training overhead to 50%. Particular attention was paid to channel coding, block interleaving and antenna diversity. Computer simulation showed that drastic improvement in error rate performance is achievable when these techniques are deployed. / Lieutenant, Hellenic Navy
|
272 |
Learning in wireless sensor networks for energy-efficient environmental monitoring / Apprentissage dans les réseaux de capteurs pour une surveillance environnementale moins coûteuse en énergieLe Borgne, Yann-Aël 30 April 2009 (has links)
Wireless sensor networks form an emerging class of computing devices capable of observing the world with an unprecedented resolution, and promise to provide a revolutionary instrument for environmental monitoring. Such a network is composed of a collection of battery-operated wireless sensors, or sensor nodes, each of which is equipped with sensing, processing and wireless communication capabilities. Thanks to advances in microelectronics and wireless technologies, wireless sensors are small in size, and can be deployed at low cost over different kinds of environments in order to monitor both over space and time the variations of physical quantities such as temperature, humidity, light, or sound. <p><p>In environmental monitoring studies, many applications are expected to run unattended for months or years. Sensor nodes are however constrained by limited resources, particularly in terms of energy. Since communication is one order of magnitude more energy-consuming than processing, the design of data collection schemes that limit the amount of transmitted data is therefore recognized as a central issue for wireless sensor networks.<p><p>An efficient way to address this challenge is to approximate, by means of mathematical models, the evolution of the measurements taken by sensors over space and/or time. Indeed, whenever a mathematical model may be used in place of the true measurements, significant gains in communications may be obtained by only transmitting the parameters of the model instead of the set of real measurements. Since in most cases there is little or no a priori information about the variations taken by sensor measurements, the models must be identified in an automated manner. This calls for the use of machine learning techniques, which allow to model the variations of future measurements on the basis of past measurements.<p><p>This thesis brings two main contributions to the use of learning techniques in a sensor network. First, we propose an approach which combines time series prediction and model selection for reducing the amount of communication. The rationale of this approach, called adaptive model selection, is to let the sensors determine in an automated manner a prediction model that does not only fits their measurements, but that also reduces the amount of transmitted data. <p><p>The second main contribution is the design of a distributed approach for modeling sensed data, based on the principal component analysis (PCA). The proposed method allows to transform along a routing tree the measurements taken in such a way that (i) most of the variability in the measurements is retained, and (ii) the network load sustained by sensor nodes is reduced and more evenly distributed, which in turn extends the overall network lifetime. The framework can be seen as a truly distributed approach for the principal component analysis, and finds applications not only for approximated data collection tasks, but also for event detection or recognition tasks. <p><p>/<p><p>Les réseaux de capteurs sans fil forment une nouvelle famille de systèmes informatiques permettant d'observer le monde avec une résolution sans précédent. En particulier, ces systèmes promettent de révolutionner le domaine de l'étude environnementale. Un tel réseau est composé d'un ensemble de capteurs sans fil, ou unités sensorielles, capables de collecter, traiter, et transmettre de l'information. Grâce aux avancées dans les domaines de la microélectronique et des technologies sans fil, ces systèmes sont à la fois peu volumineux et peu coûteux. Ceci permet leurs deploiements dans différents types d'environnements, afin d'observer l'évolution dans le temps et l'espace de quantités physiques telles que la température, l'humidité, la lumière ou le son.<p><p>Dans le domaine de l'étude environnementale, les systèmes de prise de mesures doivent souvent fonctionner de manière autonome pendant plusieurs mois ou plusieurs années. Les capteurs sans fil ont cependant des ressources limitées, particulièrement en terme d'énergie. Les communications radios étant d'un ordre de grandeur plus coûteuses en énergie que l'utilisation du processeur, la conception de méthodes de collecte de données limitant la transmission de données est devenue l'un des principaux défis soulevés par cette technologie. <p><p>Ce défi peut être abordé de manière efficace par l'utilisation de modèles mathématiques modélisant l'évolution spatiotemporelle des mesures prises par les capteurs. En effet, si un tel modèle peut être utilisé à la place des mesures, d'importants gains en communications peuvent être obtenus en utilisant les paramètres du modèle comme substitut des mesures. Cependant, dans la majorité des cas, peu ou aucune information sur la nature des mesures prises par les capteurs ne sont disponibles, et donc aucun modèle ne peut être a priori défini. Dans ces cas, les techniques issues du domaine de l'apprentissage machine sont particulièrement appropriées. Ces techniques ont pour but de créer ces modèles de façon autonome, en anticipant les mesures à venir sur la base des mesures passées. <p><p>Dans cette thèse, deux contributions sont principalement apportées permettant l'applica-tion de techniques d'apprentissage machine dans le domaine des réseaux de capteurs sans fil. Premièrement, nous proposons une approche qui combine la prédiction de série temporelle avec la sélection de modèles afin de réduire la communication. La logique de cette approche, appelée sélection de modèle adaptive, est de permettre aux unités sensorielles de determiner de manière autonome un modèle de prédiction qui anticipe correctement leurs mesures, tout en réduisant l'utilisation de leur radio.<p><p>Deuxièmement, nous avons conçu une méthode permettant de modéliser de façon distribuée les mesures collectées, qui se base sur l'analyse en composantes principales (ACP). La méthode permet de transformer les mesures le long d'un arbre de routage, de façon à ce que (i) la majeure partie des variations dans les mesures des capteurs soient conservées, et (ii) la charge réseau soit réduite et mieux distribuée, ce qui permet d'augmenter également la durée de vie du réseau. L'approche proposée permet de véritablement distribuer l'ACP, et peut être utilisée pour des applications impliquant la collecte de données, mais également pour la détection ou la classification d'événements. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
273 |
Designing and experimenting with e-DTS 3.0Phadke, Aboli Manas 29 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With the advances in embedded technology and the omnipresence of smartphones,
tracking systems do not need to be confined to a specific tracking environment. By introducing mobile devices into a tracking system, we can leverage their mobility and the
availability of multiple sensors such as camera, Wi-Fi, Bluetooth and Inertial sensors. This thesis proposes to improve the existing tracking systems, enhanced Distributed Tracking System (e-DTS 2.0) [19] and enhanced Distributed Object Tracking System (eDOTS)[26], in the form of e-DTS 3.0 and provides an empirical analysis of these improvements. The enhancements proposed are to introduce Android-based mobile devices into the tracking system, to use multiple sensors on the mobile devices such as the camera, the Wi-Fi and Bluetooth sensors and inertial sensors and to utilize possible resources that may be available in the environment to make the tracking opportunistic. This thesis empirically validates the proposed enhancements through the experiments carried out on a prototype of e-DTS 3.0.
|
274 |
Securing sensor networkZare Afifi, Saharnaz January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A wireless sensor network consists of lightweight nodes with a limited power source. They can be used in a variety of environments, especially in environments for which it is impossible to utilize a wired network. They are easy/fast to deploy. Nodes collect data and send it to a processing center (base station) to be analyzed, in order to detect an event and/or determine information/characteristics of the environment. The challenges for securing a sensor network are numerous. Nodes in this network have a limited amount of power, therefore they could be faulty because of a lack of battery power and broadcast faulty information to the network. Moreover, nodes in this network could be prone to different attacks from an adversary who tries to eavesdrop, modify or repeat the data which is collected by other nodes. Nodes may be mobile. There is no possibility of having a fixed infrastructure. Because of the importance of extracting information from the data collected by the sensors in the network there needs to be some level of security to provide trustworthy information. The goal of this thesis is to organize part of the network in an energy efficient manner in order to produce a suitable amount of integrity/security. By making nodes monitor each other in small organized clusters we increase security with a minimal energy cost. To increase the security of the network we use cryptographic techniques such as: public/ private key, manufacturer signature, cluster signature, etc. In addition, nodes monitor each other's activity in the network, we call it a "neighborhood watch" In this case, if a node does not forward data, or modifies it, and other nodes which are in their transmission range can send a claim against that node.
|
Page generated in 0.0517 seconds