Spelling suggestions: "subject:"wiskottaldrich syndrome protein""
1 |
Molecular investigations of BtK and WASPMacCarthy-Morrogh, Lucy January 1998 (has links)
No description available.
|
2 |
Structural study of the WH2 family and filamin : implications for actin cytoskeleton regulation /Aguda, Adeleke H., January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 3 uppsatser.
|
3 |
Biochemical and biophysical characterization of the allosteric equilibrium of the Wiskott-Aldrich Syndrome proteinLeung, Daisy W. January 2005 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Embargoed. Vita. Bibliography: References located at the end of each chapter.
|
4 |
CD4+ Foxp3+ regulatory T cell homing & homeostasis /Sather, Blythe Duke. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 122-140).
|
5 |
Structure, function and evolution of human subtelomeres /Linardopoulou, Elena, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 214-243).
|
6 |
The characterization of the cytoskeleton and associated proteins in the formation of wound-induced contractile arrays /Stromme, Adrianna. January 2008 (has links)
The cytoskeleton is an intrinsic aspect of all cells, and is essential for many cellular events including cell motility, endocytosis, cell division and wound healing. Remodeling of the cytoskeleton in response to these cellular activities leads to significant alterations in the morphology of the cell. One such alteration is the formation of an actomyosin contractile array required for cytokinesis, wound healing and embryonic development. / Cellular structure and shape depends upon tensional prestress brought about by the organization of cytoskeletal components. Using the Xenopus laevis oocyte wound healing model, it is first described how diminished cellular tension affects the balance of the Rho family of GTPases, and subsequently prevents the formation of actomyosin contractile arrays. This suggests that cellular tension in the cell is not created at the level of the cytoskeletal elements but rather via the upstream signaling molecules: RhoA and Cdc42. / The role of N-WASP (Neural-Wiscott Aldrich Syndrome Protein), a mediator of Arp2/3 based actin polymerization, is next examined for its putative role in cellular wound healing. Xenopus laevis oocytes injected with mutant N-WASP constructs reveals in vivo evidence that functional N-WASP is required for appropriate contractile array formation and wound closure. / Lastly, it is revealed that the cellular structures involved with single cell wound healing in other model systems are also important for the initial repair of severed muscle cells. Actin, non-muscle myosin-II, microtubules, sarcomeric myosin and Cdc42 are all recruited and reorganized at the edge of damaged C2C12 myotubes. This data promotes the possibility that an actomyosin array may be established in injured muscle cells as well.
|
7 |
The characterization of the cytoskeleton and associated proteins in the formation of wound-induced contractile arrays /Stromme, Adrianna. January 2008 (has links)
No description available.
|
8 |
Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in miceLyubimova, A., Garber, J.J., Upadhyay, G., Sharov, A.A., Anastasoaie, F., Yajnik, V., Cotsarelis, G., Dotto, G.P., Botchkarev, Vladimir A., Snapper, S.B. January 2010 (has links)
No / The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
|
9 |
Multifonctionnalité de l'aldolase glycolytique : mécanisme catalytique et interaction avec un peptide de la protéine du syndrome Wiskott-AldrichSt-Jean, Miguel January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
10 |
Multifonctionnalité de l'aldolase glycolytique : mécanisme catalytique et interaction avec un peptide de la protéine du syndrome Wiskott-AldrichSt-Jean, Miguel January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
Page generated in 0.07 seconds