• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targetry investigations of 186Re production via proton induced reactions on natural Osmium disulfide and Tungsten disulfide targets

Gott, M. D., Wycoff, D. E., Balkin, E. R., Smith, B. E., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Wilbur, D. S., Jurisson, S. S. 19 May 2015 (has links) (PDF)
Introduction Radioisotopes play an important role in nuclear medicine and represent powerful tools for imaging and therapy. With the extensive use of 99mTc-based imaging agents, therapeutic rhenium analogues are highly desirable. Rhenium-186 emits therapeutic − particles with an endpoint-energy of 1.07 MeV, allowing for a small, targeted tissue range of 3.6 mm. Additionally, its low abundance γ-ray emission of 137.2 keV (9.42 %) allows for in vivo tracking of a radiolabeled compounds and dosimetry calculations. With a longer half-life of 3.718 days, synthesis and shipment of Re-186 based radiopharmaceuticals is not limited. Rhenium-186 can be produced either in a reactor or in an accelerator. Currently, Re-186 is produced in a reactor via the 185Re(n,γ) reaction resulting in low specific activity which makes its therapeutic application limited.[1] Production in an accelerator, such as the PETtrace at the University of Missouri Research Reactor (MURR), can theoretically provide a specific activity of 34,600 Ci.mmol−1 Re[2], which represents a 62 fold increase over reactor produced 186Re. The studies reported herein focused on the evaluation of accelerator-based reaction pathways to produce high specific activity (HSA) 186Re. Those pathways include proton and deuteron bombardment of tungsten and osmium targets by the following reactions: 186W(p,n)186Re, 186W(d,2n) 186Re, 189Os(p,α)186Re, and 192Os(p,α3n)186Re. Additional information on target design related to the determination and optimization of production rates, radionuclidic purity, and yield are presented. Material and Methods Osmium and tungsten metals are very hard and thus very brittle. Attempts at pressing the pure metal into aluminum backings resulted in chalky targets, which easily crumbled during handling. Osmium disulfide (OsS2) and tungsten disulfide (WS2) were identified to provide a softer, less brittle chemical form for targets. OsS2 and WS2 targets were prepared using a unilateral press with a 13 mm diameter die to form pressed powder discs. A simple target holder design (FIG. 1) was implemented to provide a stabilizing platform for the pressed discs. The target material was sealed in place with epoxy using a thin aluminum foil pressed over the target face. Initial irradiations of OsS2 were performed using the 16 MeV GE PETtrace cyclotron at MURR. Irradiations were performed for 30–60 minutes with proton beam currents of 10–20 µA. Following irradiation, the OsS2 targets were dissolved in NaOCl and the pH adjusted using NaOH. The resultant aqueous solution was mixed with methyl ethyl ketone (MEK), with the lipophilic perrhenate being extracted into the MEK layer and the osmium and iridium remaining in the aqueous layer. The MEK extracts were then passed through an acidic alumina column to remove any remaining osmium and iridium. Determination of rhenium and iridium activities was done by gamma spectroscopy on an HPGe detector. Preliminary irradiations on WS2 targets were performed at MURR with the beam degraded to 14 MeV with a proton beam current of 10 µA for 60 minutes. After irradiation, WS2 was dissolved using 30% H2O2 with gentle heating and counted on an HPGe detector to determine the radio-nuclides produced. Results and Conclusion Thin natOsS2 targets were produced, irradiated at 16 MeV for 10 µAh, and analyzed for radiorhenium. Under these irradiation conditions, rhenium isotopes were produced in nanocurie quantities while iridium isotopes were produced in microcurie quantities. Future studies with higher proton energies are planned to increase the production of rhenium and decrease the production of iridium. After optimizing irradiation conditions, enriched 189Os will be used for irradiations to reduce the production of unwanted radionuclides. A liquid-liquid extraction method separated the bulk of the rhenium from the iridium. The majority of the rhenium produced was recovered in the first organic aliquot with little iridium observed while the majority of the iridium and osmium was retained in the first aqueous aliquot. Target production with WS2 was successful. A thin target of natWS2 was produced and irradiated at 14 MeV for 10 µAh. Under these irradiation conditions, several rhenium isotopes were produced in microcurie quantities. Target parameters to maximize 186Re production remain to be determined before enriched 186W targets are used for irradiations to reduce the production of unwanted radionuclides. In conclusion, the potential production routes for accelerator-produced high specific activity 186Re are being evaluated. Cyclotron-based irradiations of natOsS2 targets established the feasibility of producing rhenium via the natOs(p,αxn)Re reaction. Current results indicate higher proton energies are necessary to reduce the production of unwanted iridium isotopes while increasing the production of rhenium isotopes. Preliminary irradiations were performed using the 50.5 MeV Scanditronix MC50 clinical cyclotron at the University of Washington to determine irradiation parameters for future higher energy irradiations (20–30 MeV). A rapid liquid-liquid extraction method isolated rhenium from the bulk of the iridium and osmium following irradiation. Preliminary studies indicate WS2 may also provide a suitable target material to produce 186Re via the (p,n) reaction pathway.
2

Targetry investigations of 186Re production via proton induced reactions on natural Osmium disulfide and Tungsten disulfide targets

Gott, M. D., Wycoff, D. E., Balkin, E. R., Smith, B. E., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Wilbur, D. S., Jurisson, S. S. January 2015 (has links)
Introduction Radioisotopes play an important role in nuclear medicine and represent powerful tools for imaging and therapy. With the extensive use of 99mTc-based imaging agents, therapeutic rhenium analogues are highly desirable. Rhenium-186 emits therapeutic − particles with an endpoint-energy of 1.07 MeV, allowing for a small, targeted tissue range of 3.6 mm. Additionally, its low abundance γ-ray emission of 137.2 keV (9.42 %) allows for in vivo tracking of a radiolabeled compounds and dosimetry calculations. With a longer half-life of 3.718 days, synthesis and shipment of Re-186 based radiopharmaceuticals is not limited. Rhenium-186 can be produced either in a reactor or in an accelerator. Currently, Re-186 is produced in a reactor via the 185Re(n,γ) reaction resulting in low specific activity which makes its therapeutic application limited.[1] Production in an accelerator, such as the PETtrace at the University of Missouri Research Reactor (MURR), can theoretically provide a specific activity of 34,600 Ci.mmol−1 Re[2], which represents a 62 fold increase over reactor produced 186Re. The studies reported herein focused on the evaluation of accelerator-based reaction pathways to produce high specific activity (HSA) 186Re. Those pathways include proton and deuteron bombardment of tungsten and osmium targets by the following reactions: 186W(p,n)186Re, 186W(d,2n) 186Re, 189Os(p,α)186Re, and 192Os(p,α3n)186Re. Additional information on target design related to the determination and optimization of production rates, radionuclidic purity, and yield are presented. Material and Methods Osmium and tungsten metals are very hard and thus very brittle. Attempts at pressing the pure metal into aluminum backings resulted in chalky targets, which easily crumbled during handling. Osmium disulfide (OsS2) and tungsten disulfide (WS2) were identified to provide a softer, less brittle chemical form for targets. OsS2 and WS2 targets were prepared using a unilateral press with a 13 mm diameter die to form pressed powder discs. A simple target holder design (FIG. 1) was implemented to provide a stabilizing platform for the pressed discs. The target material was sealed in place with epoxy using a thin aluminum foil pressed over the target face. Initial irradiations of OsS2 were performed using the 16 MeV GE PETtrace cyclotron at MURR. Irradiations were performed for 30–60 minutes with proton beam currents of 10–20 µA. Following irradiation, the OsS2 targets were dissolved in NaOCl and the pH adjusted using NaOH. The resultant aqueous solution was mixed with methyl ethyl ketone (MEK), with the lipophilic perrhenate being extracted into the MEK layer and the osmium and iridium remaining in the aqueous layer. The MEK extracts were then passed through an acidic alumina column to remove any remaining osmium and iridium. Determination of rhenium and iridium activities was done by gamma spectroscopy on an HPGe detector. Preliminary irradiations on WS2 targets were performed at MURR with the beam degraded to 14 MeV with a proton beam current of 10 µA for 60 minutes. After irradiation, WS2 was dissolved using 30% H2O2 with gentle heating and counted on an HPGe detector to determine the radio-nuclides produced. Results and Conclusion Thin natOsS2 targets were produced, irradiated at 16 MeV for 10 µAh, and analyzed for radiorhenium. Under these irradiation conditions, rhenium isotopes were produced in nanocurie quantities while iridium isotopes were produced in microcurie quantities. Future studies with higher proton energies are planned to increase the production of rhenium and decrease the production of iridium. After optimizing irradiation conditions, enriched 189Os will be used for irradiations to reduce the production of unwanted radionuclides. A liquid-liquid extraction method separated the bulk of the rhenium from the iridium. The majority of the rhenium produced was recovered in the first organic aliquot with little iridium observed while the majority of the iridium and osmium was retained in the first aqueous aliquot. Target production with WS2 was successful. A thin target of natWS2 was produced and irradiated at 14 MeV for 10 µAh. Under these irradiation conditions, several rhenium isotopes were produced in microcurie quantities. Target parameters to maximize 186Re production remain to be determined before enriched 186W targets are used for irradiations to reduce the production of unwanted radionuclides. In conclusion, the potential production routes for accelerator-produced high specific activity 186Re are being evaluated. Cyclotron-based irradiations of natOsS2 targets established the feasibility of producing rhenium via the natOs(p,αxn)Re reaction. Current results indicate higher proton energies are necessary to reduce the production of unwanted iridium isotopes while increasing the production of rhenium isotopes. Preliminary irradiations were performed using the 50.5 MeV Scanditronix MC50 clinical cyclotron at the University of Washington to determine irradiation parameters for future higher energy irradiations (20–30 MeV). A rapid liquid-liquid extraction method isolated rhenium from the bulk of the iridium and osmium following irradiation. Preliminary studies indicate WS2 may also provide a suitable target material to produce 186Re via the (p,n) reaction pathway.
3

Strukturelle, mechanische und tribologische Charakterisierung von Sol-Gel-Schichten mit eingebetteten anorganischen fullerenartigen Wolframdisulfid-Partikeln

Hattermann, Hilke 19 August 2010 (has links) (PDF)
Die Herstellung von Kompositschichten aus unterschiedlichen Materialien mit verbesserten Schichteigenschaften stellt einen in den letzten Jahren intensiv erforschten Bereich der Dünnschichttechnik dar. Eine Methode zur Präparation solcher Kompositschichten besteht darin, Nano- oder Mikropartikel in eine Matrix aus einem anderen Material einzubringen. In der vorliegenden Arbeit werden so bis zu einige Mikrometer dicke Kompositschichten untersucht, die mit einem Sol-Gel-Verfahren hergestellt wurden und die bis zu 30 Gew.-% Wolframdisulfid-Partikel enthalten, welche als anorganische Fullerene typische Teilchengrößen von etwa 100 nm bis 200 nm aufweisen. Zwei unterschiedliche Arten an Kompositschichten mit eingebetteten Partikeln aus Wolframdisulfid werden hergestellt: Zum einen Schichten mit einer deutlich steiferen Matrix aus Aluminiumoxid und zum anderen Schichten mit einer Matrix aus organisch modifiziertem Siliziumoxid. Die strukturelle Charakterisierung der Schichten erfolgt über verschiedene analytische Verfahren. So werden die Kristallstruktur und chemische Zusammensetzung der Schichten mit Hilfe von Röntgenbeugungs- und Röntgenfluoreszenzmessungen sowie energiedispersiver Röntgenspektroskopie ermittelt. Raster- und Transmissionselektronenmikroskopie werden verwendet, um Aufschluss über die Verteilung der Wolframdisulfid-Partikel und ihren Einschluss in die jeweilige Matrix zu erhalten. Weiterhin werden die Rauheit und das Versagen der Schichthaftung auf dem Substrat untersucht. Der Einfluss der inkorporierten Partikel sowie der Herstellungstemperatur der Proben auf die mechanischen Eigenschaften der Kompositschichten wie Härte und E-Modul werden experimentell mit Nanoindentationsmessungen sowie theoretisch mittels verschiedener Modelle für effektive Materialien ermittelt. Schließlich erfolgt eine Charakterisierung der tribologischen Eigenschaften der Kompositschichten im Vergleich zu undotierten Schichten aus Aluminiumoxid oder organisch modifiziertem Siliziumoxid. Mit Hilfe einer Kugel-Scheibe-Geometrie wird der Reibkoeffizient der Schichten unter verschiedenen Bedingungen gemessen. Dabei zeigt sich, dass bei ausreichender Menge des eingeschlossenen Wolframdisulfids ein reibungsmindernder Effekt auftritt, was vielversprechend für eine mögliche Anwendung solcher Kompositschichten ist. / The preparation of composite coatings consisting of different materials with improved properties has been an intensively studied area of thin film technology in recent years. One method to prepare such composite coatings is the incorporation of nano or micro particles into a matrix of a different material. In this thesis, such composite coatings are investigated which have been prepared via a sol-gel route und contain up to about 30 wt.-% tungsten disulfide particles. These inorganic fullerenes have typical particle sizes of about 100 nm to 200 nm. Two different types of composite coatings with a thickness of up to a few micrometers and with embedded tungsten disulfide particles are prepared: First, coatings with a relatively stiff alumina matrix, and second, coatings with a matrix made of organically modified silica. Different analytical methods are used for the structural characterization of the coatings. The crystal structure and the chemical composition of the coatings are determined via x-ray diffraction and x-ray fluorescence measurements and via energy-dispersive x-ray spectroscopy. Through scanning and transmission electron microscopy the incorporation and the distribution of the tungsten disulfide particles in the respective matrix are analysed. Furthermore, the roughness and the adhesion of the coatings on the substrate are investigated. The influence of the embedded particles and of the temperature of the final heat treatment during the sample preparation on the mechanical properties, like elastic modulus and hardness, of the composite coatings are measured through nanoindentation testing. These experimental results are compared with theoretical values determined via different analytical models for effective materials. Finally, the tribological behavior of the composite coatings is investigated in comparison to pure coatings made of alumina or organically modified silica. With ball-on-disc tests the coefficient of friction of the coatings is measured under different conditions. It can be seen that the incorporation of a sufficiently high amount of tungsten disulfide leads to a strong reduction of friction, which is promising for a possible application of such composite coatings.
4

Strukturelle, mechanische und tribologische Charakterisierung von Sol-Gel-Schichten mit eingebetteten anorganischen fullerenartigen Wolframdisulfid-Partikeln

Hattermann, Hilke 30 July 2010 (has links)
Die Herstellung von Kompositschichten aus unterschiedlichen Materialien mit verbesserten Schichteigenschaften stellt einen in den letzten Jahren intensiv erforschten Bereich der Dünnschichttechnik dar. Eine Methode zur Präparation solcher Kompositschichten besteht darin, Nano- oder Mikropartikel in eine Matrix aus einem anderen Material einzubringen. In der vorliegenden Arbeit werden so bis zu einige Mikrometer dicke Kompositschichten untersucht, die mit einem Sol-Gel-Verfahren hergestellt wurden und die bis zu 30 Gew.-% Wolframdisulfid-Partikel enthalten, welche als anorganische Fullerene typische Teilchengrößen von etwa 100 nm bis 200 nm aufweisen. Zwei unterschiedliche Arten an Kompositschichten mit eingebetteten Partikeln aus Wolframdisulfid werden hergestellt: Zum einen Schichten mit einer deutlich steiferen Matrix aus Aluminiumoxid und zum anderen Schichten mit einer Matrix aus organisch modifiziertem Siliziumoxid. Die strukturelle Charakterisierung der Schichten erfolgt über verschiedene analytische Verfahren. So werden die Kristallstruktur und chemische Zusammensetzung der Schichten mit Hilfe von Röntgenbeugungs- und Röntgenfluoreszenzmessungen sowie energiedispersiver Röntgenspektroskopie ermittelt. Raster- und Transmissionselektronenmikroskopie werden verwendet, um Aufschluss über die Verteilung der Wolframdisulfid-Partikel und ihren Einschluss in die jeweilige Matrix zu erhalten. Weiterhin werden die Rauheit und das Versagen der Schichthaftung auf dem Substrat untersucht. Der Einfluss der inkorporierten Partikel sowie der Herstellungstemperatur der Proben auf die mechanischen Eigenschaften der Kompositschichten wie Härte und E-Modul werden experimentell mit Nanoindentationsmessungen sowie theoretisch mittels verschiedener Modelle für effektive Materialien ermittelt. Schließlich erfolgt eine Charakterisierung der tribologischen Eigenschaften der Kompositschichten im Vergleich zu undotierten Schichten aus Aluminiumoxid oder organisch modifiziertem Siliziumoxid. Mit Hilfe einer Kugel-Scheibe-Geometrie wird der Reibkoeffizient der Schichten unter verschiedenen Bedingungen gemessen. Dabei zeigt sich, dass bei ausreichender Menge des eingeschlossenen Wolframdisulfids ein reibungsmindernder Effekt auftritt, was vielversprechend für eine mögliche Anwendung solcher Kompositschichten ist. / The preparation of composite coatings consisting of different materials with improved properties has been an intensively studied area of thin film technology in recent years. One method to prepare such composite coatings is the incorporation of nano or micro particles into a matrix of a different material. In this thesis, such composite coatings are investigated which have been prepared via a sol-gel route und contain up to about 30 wt.-% tungsten disulfide particles. These inorganic fullerenes have typical particle sizes of about 100 nm to 200 nm. Two different types of composite coatings with a thickness of up to a few micrometers and with embedded tungsten disulfide particles are prepared: First, coatings with a relatively stiff alumina matrix, and second, coatings with a matrix made of organically modified silica. Different analytical methods are used for the structural characterization of the coatings. The crystal structure and the chemical composition of the coatings are determined via x-ray diffraction and x-ray fluorescence measurements and via energy-dispersive x-ray spectroscopy. Through scanning and transmission electron microscopy the incorporation and the distribution of the tungsten disulfide particles in the respective matrix are analysed. Furthermore, the roughness and the adhesion of the coatings on the substrate are investigated. The influence of the embedded particles and of the temperature of the final heat treatment during the sample preparation on the mechanical properties, like elastic modulus and hardness, of the composite coatings are measured through nanoindentation testing. These experimental results are compared with theoretical values determined via different analytical models for effective materials. Finally, the tribological behavior of the composite coatings is investigated in comparison to pure coatings made of alumina or organically modified silica. With ball-on-disc tests the coefficient of friction of the coatings is measured under different conditions. It can be seen that the incorporation of a sufficiently high amount of tungsten disulfide leads to a strong reduction of friction, which is promising for a possible application of such composite coatings.

Page generated in 0.0408 seconds