• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analyse fonctionnelle de cytochromes P450 de la famille CYP94 et des amidohydrolases IAR3 et ILL6 dans le catabolisme hormonal des jasmonates chez Arabidopsis thaliana / Functional analysis of cytochromes P450 from the CYP94 family and the IAR3 and ILL6 amido-hydrolases in the jasmonate hormonal catabolism in Arabidopsis thaliana

Widemann, Émilie 10 September 2014 (has links)
Les jasmonates jouent des rôles essentiels en réponse aux stress environnementaux et dans le développement des plantes. Jasmonoyl-isoleucine (JA-Ile), la forme hormonale active, est sous un contrôle métabolique strict. Nos études biochimiques, génétiques et métaboliques ont montré que l’inactivation de JA-Ile est contrôlée par 2 voies, l’une oxydative par les cytochromes P450 CYP94 et l’autre hydrolytique par les amido-hydrolases IAR3 et ILL6. Ces enzymes définissent une grille métabolique vers de nombreux jasmonates. Ces conversions constituent un mécanisme général contrôlant le turnover de JA-Ile et les réponses induites, opèrant après blessure, infection par le champignon Botrytis cinerea ou le développement floral. En outre, les CYP94s oxydent le conjugué Jasmonoyl-Phenylalanine (JA-Phe) accumulé dans les feuilles blessées. Les CYP94s catalysent la carboxylation de JA-Ile et de JA-Phe via un intermédiaire aldéhyde, le JA-Ile-aldéhyde étant accumulé in vivo. Ces travaux élucident un nouveau catabolisme hormonal de plantes et son impact sur un réseau métabolique dynamique et complexe par l’action concertée de deux familles d’enzymes. / Jasmonates are plant molecules playing essential roles in response to environmental stresses and in plant development. Jasmonoyl-Isoleucine (JA-Ile) is an active hormonal form of jasmonates so it is crucial for the plant to control its levels. Biochemical, genetic and metabolic studies showed that JA-Ile inactivation after wounding is controlled by two pathways, based on oxidations by cytochromes P450 of the CYP94 family and on cleavage by the amido-hydrolases IAR3 and ILL6. These enzymes also define a pathway for tuberonic acid (12OH-JA) production from JA. CYP94-catalyzed oxidations seem to be a general mechanism to control JA-Ile hormone turnover, jasmonate signaling and responses as it also occurs upon infection by the fungus Botrytis cinerea and in floral development. CYP94s oxidize also the Jasmonoyl-Phenylalanine (JA-Phe) conjugate accumulated in wounded leaves. CYP94s mediated JA-Ile and JA-Phe carboxylation includes an aldehyde intermediate, that of JA-Ile being accumulated in vivo.This work highlights the dynamic metabolism of jasmonate derivatives in a complex branched network involving the concerted action of two enzyme families.
32

The role of BAHD acyltransferases in poplar (Populus spp.) secondary metabolism and synthesis of salicinoid phenolic glycosides

Chedgy, Russell James 24 April 2015 (has links)
The salicinoids are phenolic glycosides (PGs) characteristic of the Salicaceae family and are known defenses against insect herbivory. Common examples are salicin, salicortin, tremuloidin, and tremulacin, which accumulate to high concentrations in the leaves and bark of willows and poplars. Despite their important role in plant defense, their biosynthetic pathway is not known, although recent work has suggested that benzyl benzoate acts as a possible biosynthetic intermediate. We identified three candidate genes encoding BAHD-type acyltransferases that are predicted to produce benzylated secondary metabolites, named PtACT47, PtACT49, and PtACT54. Expression of PtACT47 and PtACT49 generally correlated with PG content in a variety of tissues and organs of wild type hybrid poplar plants. This correlation was also found in transgenic hybrid poplar where PG content varied with the level of expression of the condensed tannin regulator MYB134 transcript. In these plants, a suppression of PtACT47 and PtACT49 expression was correlated with lower PG content. In contrast, PtACT54 exhibited very low expression in all tissues tested, and this level of expression was not affected in MYB134 plants. In order to better understand their possible biochemical functions, cDNA cloning, heterologous expression, and in vitro functional characterization was performed on these three BAHD acyltransferases. Recombinant PtACT47 exhibited a low substrate selectivity and could utilize acetyl-CoA, benzoyl-CoA, and cinnamoyl-CoA as acyl donors with a variety of alcohols as acyl acceptors. This enzyme showed the greatest Km/Kcat ratio (45.8 nM-1 sec-1) and lowest Km values (45.1 µM) with benzoyl-CoA and salicyl alcohol, and was named benzoyl-CoA:salicyl alcohol O-benzoyltransferase (PtSABT). Recombinant PtACT49 utilized a narrower range of substrates, specifically benzoyl-CoA and acetyl-CoA and a limited number of alcohols. Its highest Km/Kcat (31.8 nM-1 sec-1) and lowest Km (55.3 µM) was observed for benzoyl-CoA and benzyl alcohol, and it was named benzoyl-CoA:benzyl alcohol O-benzoyltransferase (PtBEBT). Both enzymes were also capable of synthesizing plant volatile alcohol esters at trace levels, for example hexenyl benzoate. Recombinant PtACT54 shares low sequence identity with PtSABT (52.3%) and PtBEBT (52.5%) and exhibited only moderate BEBT-like properties. PtSABT and PtBEBT appear to be paralogs based on their high sequence identity (90.6%) and closely related yet distinct biochemical functions. They likely arose from gene duplication and subsequent functional diversification possibly by neofunctionalization. Wounding experiments showed that abiotic damage stimulated the synthesis of specific PGs, notably salicin and salicortin within 24-48hrs. This was accompanied by a proportional increase in the expression of PtSABT and PtBEBT. Furthermore, experiments using transgenic RNAi lines with knock-down suppression of PtBEBT, and PtSABT, and both genes simultaneously, provided the first direct evidence that BAHD acyltransferases are important in PG production. PtSABT suppression, both individually and in the double knock-down suppression, significantly lowered salicortin content, particularly in mature leaves. However, a reduced level of PtBEBT expression did not have a significant effect on the PGs measured. This could indicate that BEBT-like activity may be a shared function among closely related BAHDs. The suppression of multiple BEBT-like genes may be necessary to further delineate their functions. / Graduate / rjchedgy@uvic.ca
33

Individual psychodynamic development : the Imago relationship approach in organisational context

Agathagelou, Amanda May 09 1900 (has links)
Imago relationship therapy was originally applied to couples counselling by Dr Hendrix (1992, 1993). This model was applied to a group of senior managers from the Lonmin Platinum Mine to create an understanding of intrapersonal and interpersonal dynamics to reduce the conflict levels they experienced in the workplace. Imago theory is applicable to the workplace because of the influence of intrapersonal processes on interpersonal dynamics, which is the same influence that causes conflict in romantic relationships. Love relationships consist of three stages, namely romantic love, the power struggle stage, and the real love stage. In the organisational context, these stages are the initial excitement phase, the power struggle stage, and the conscious relating stage. The study aimed to obtain quantitative and qualitative data on the effects of the Imago theory programme presented to the group of managers. The study thus aimed to determine whether the managers experienced a shift in their consciousness after the programme had been presented. Furthermore, the study aimed to determine whether such a shift in consciousness would have an effect on the individuals’ overall emotional wellbeing and if it would increase their overall life satisfaction. Furthermore, the study investigates if the programme had a positive effect on their interpersonal relationships (particularly with their subordinates). Twenty-two senior managers and 22 subordinates participated in the study. Certain pre-tests were conducted, followed by the seven-module intervention. The same post-tests were conducted after the training had taken place. Quantitative and qualitative results were obtained. The quantitative results showed that the participants’ problem solving abilities improved and that they experienced marginally higher levels of life satisfaction. The reactivity levels experienced by the participants during conflict situations decreased, and their levels of marital satisfaction improved. The results also showed that the managers responded more positively to their subordinates after the intervention. Furthermore, the subordinates experienced their managers as being more flexible after the intervention. The qualitative results indicated that a shift in consciousness did take place as envisaged. The group understood both intrapersonal and interpersonal psychodynamics. They also willingly applied Imago concepts to improve their functioning in the organisational context. / Psychology / D. Litt. et Phil. (Psychology)
34

“I Almost Hope I Get Hit Again Soon”: The Wartime Service and Medical History of Leon C. Standifer, WWII American Infantryman

Laguna, Alexis M 23 May 2019 (has links)
The American GI’s experience in hospital during World War II is absent from official military histories, most scholarly works, and even many oral history collections. Utilizing the papers of WWII infantryman, Leon Standifer, this thesis offers the reader a rare glimpse of WWII military hospital life and chronicles one soldier’s journey from willing obedience to subversive action. This thesis compares the stated goals and procedures of the US Army medical department to the experience of Leon Standifer, an infantryman who served in northern France during the last year of the war and the American occupation of Bavaria, whose service was marked by several periods of protracted hospitalization. Over the course of five hospitalizations, during which Standifer was treated for bullet wounds, trench foot, and pneumonia, he consistently wrote letters to his family describing his experience. A careful reading of Standifer’s wartime correspondence in conjunction with his published and unpublished writings, secondary source material, and military records, suggest that while isolated in the hospital, after killing and experiencing the death of his comrades, Standifer lost his desire to fight. He began to make calculated decisions based on his knowledge of the military medical system in an attempt to ensure his survival and control the remainder of his military service.
35

Étude de la synthèse des furocoumarines chez le panais par des approches d'ingénierie métabolique et de multi-omique / Study of furocoumarin synthesis in parsnip using metabolic engineering and multi-omic approaches

Galati, Gianni 17 July 2019 (has links)
Les plantes sont soumises durant leur vie à de nombreux stress environnementaux. Face à ces contraintes, les végétaux ont développé au cours de l'évolution différentes stratégies. La plus emblématique est la mise en place du métabolisme spécialisé, représenté par une grande diversité chimique et fonctionnelle. Bien que ce métabolisme soit de plus en plus étudié ces dernières années, de nombreuses lacunes persistes à son propos, liées notamment (i) à la complexité des modifications métabolomiques engendrées par la perception de stress, (ii) aux coûts et avantages que ces métabolites imputent à la plante les accumulant, et (iii) aux voies métaboliques menant à cette diversité de composés. Pour appréhender ces différentes problématiques, nous avons adopté une stratégie combinant des approches de phytochimie, de biologie moléculaire et de génétique. Dans un premier temps, nous avons étudié les changements métaboliques globaux engendrés par l’application de deux stress environnementaux, l’ozone et la blessure mécanique, sur une plante modèle au laboratoire, le panais, en fonction du temps. Les résultats de ces travaux nous ont permis d’identifier 40 métabolites différentiellement accumulés dans ces conditions, dont certaines furocoumarines. Par la suite, nous avons focalisé notre étude sur ces molécules en évaluant leurs profils d’accumulation, en condition de stress par blessures mécaniques, par la biais d’analyses différentielles. A partir de ces données, nous avons initié la recherche et l'identification de gènes candidats potentiellement impliqués dans cette voie à partir de plusieurs banques transcriptomiques et génomiques de panais. La fonction des gènes sélectionnés a été évalué par des approches d'expression hétérologue dans la levure. En parallèle de ces travaux, nous avons développé une stratégie destinée à mieux comprendre le coût métabolique de la synthèse de métabolites spécialisés. Pour ce faire, nous avons adapté aux furocoumarines une technique de clonage multigénique permettant de transférer dans une plante, et en une seule opération, plusieurs gènes impliqués dans la même voie de biosynthèse. Cette méthode nous a permis d'initier la génération de lignées stables ayant intégré les deux premiers gènes de la voie. Ces plantes seront comparées à des plantes sauvages et permettront ainsi d’étudier les coûts métaboliques et physiologiques de l’introduction de cette nouvelle voie de biosynthèse ainsi que ses bénéfices en termes de défense de la plante. / Plants are subjected to many environmental stresses during their life. Faced with these constraints, plants have developed different strategies during their evolution. The most emblematic is the establishment of a specialized metabolism, represented by a great chemical and functional diversity. Although this metabolism has been studied more and more in recent years, many gaps remain, related in particular (i) to the complexity of the metabolomic changes generated by the perception of stress, (ii) to the costs and benefits that these metabolites impute to the producing plant, and (iii) to the metabolic pathways leading to the diversity of compounds. To cope with these different issues, we adopted a strategy combining approaches of phytochemistry, molecular biology and genetics. First, we studied global metabolic changes caused by the application of two environmental stresses, ozone and mechanical wounding, on parsnip. The obtained results allowed us to identify 40 metabolites differentially accumulated under these conditions, including some furocoumarins. Subsequently, we focused our study on these molecules by evaluating their accumulation profiles under mechanical wounding stress condition, using differential analyzes. From this data, we initiated the search and identification of candidate genes potentially involved in this pathway based on transcriptomic and genomic parsnip libraries analyses. The function of the selected genes was evaluated by heterologous expression approach in yeast. In parallel to this work, we have developed a strategy to better understand the metabolic cost of specialized metabolites synthesis. To do this, we have adapted a multigene cloning method to furocoumarines, allowing to transfer several genes involved in the same pathway in a plant, in a single operation. This method allowed us to initiate the generation of stable lines having integrated the first two genes of the pathway. These plants will be compared to wild plants and will thus allow to study the metabolic and physiological costs of the introduction of this new biosynthetic pathway and its benefits in terms of plant defense.
36

A model system using insects to vector Fusarium tumidum for biological control of gorse (Ulex europaeus)

Yamoah, Emmanuel January 2007 (has links)
The overall objective of this study was to test the hypothesis that insects can vector F. tumidum conidia to infect gorse plants with the aim of developing an alternative approach to mycoherbicide delivery to control weeds. Four potential insect species (Apion ulicis, Cydia ulicetana, Epiphyas postvittana and Sericothrips staphylinus) were assessed for their ability to vector F. tumidum conidia. To achieve this, the external microflora (bacteria and fungi) and the size and location of fungal spores on the cuticle of these insect species were determined. In addition, the ability of the insects to pick up and deposit F. tumidum conidia on agar was studied. Based on the results from these experiments, E. postvittana was selected for more detailed experiments to determine transmission of F. tumidum to infect potted gorse plants. The factors promoting pathogenicity of F. tumidum against gorse and the pathogen loading required to infect and kill the weed were also determined. The external microflora of the four insect species were recovered by washing and plating techniques and identified by morphology and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and sequencing of internally transcribed spacer (ITS) and 16S rDNA. A culture-independent technique (direct PCR) was also used to assess fungal diversity by direct amplification of ITS sequences from the washings of the insects. All insect species carried Alternaria, Cladosporium, Nectria, Penicillium, Phoma, Pseudozyma spp. and entomopathogens. Ninety four per cent of the 178 cloned amplicons had ITS sequences similarity to Nectria mauritiicola. E. postvittana carried the largest fungal spores (mean surface area of 125.9 µm²) and the most fungal CFU/insect. About 70% of the fungi isolated from the insects were also present on the host plant (gorse) and the understorey grass. The mean size of fungal spores recovered from the insect species correlated strongly with their body length (R² = 85%). Methylobacterium aquaticum and Pseudomonas lutea were common on all four insect species. Pseudomonas fluorescens was the most abundant bacterial species. In the pathogenicity trials, the effectiveness of F. tumidum in reducing root and shoot biomass of 16 and 8 wk old gorse plants was significantly increased with wounding of the plants. Older plants (32 wk old) which were wounded and inoculated were significantly shorter, more infected and developed more tip dieback (80%) than plants which were not wounded (32%). This indicates that damage caused by phytophagous insect species present on gorse through feeding and oviposition may enhance infection by F. tumidum. Wounding may release nutrients (e.g. Mg and Zn) essential for conidia germination and germ tube elongation and also provide easier access for germ tube penetration. Conidial germination and germ tube length were increased by 50 and 877%, respectively when incubated in 0.2% of gorse extract solution for 24 h compared with incubation in water. Inoculum suspensions amended with 0.2% of gorse extract caused more infection and significantly reduced biomass production of 24 wk old gorse plants than suspensions without gorse extract. A minimum number of about 900 viable conidia/infection site of F. tumidum were required to infect gorse leaves. However, incorporation of amendments (which can injure the leaf cuticle) or provision of nutrients (i.e. gorse extract or glucose) in the formulation might decrease the number of conidia required for lesion formation. Scanning electron micrographs showed that germ tube penetration of gorse tissue was limited to open stomata which partly explain the large number of conidia required for infection. The flowers and leaves were more susceptible to F. tumidum infection than the spines, stems and pods. An experiment to determine the number of infection sites required to cause plant mortality showed that the entire plant needs to be inoculated in order for the pathogen to kill 10 wk old plants as F. tumidum is a non systemic pathogen. The number of infection sites correlated strongly with disease severity (R² = 99.3%). At least 50% of the plant was required to be inoculated to cause a significant reduction in shoot dry weight. F. tumidum, applied as soil inoculant using inoculated wheat grains in three separate experiments, significantly suppressed gorse seedling emergence and biomass production. In experiments to determine the loading capacity of the insect species, E. postvittana, the largest insect species studied, carried significantly more (68) and deposited significantly more (29) F. tumidum conidia than the other species. Each E. postvittana, loaded with 5,000 conidia of F. tumidum, transmitted approximately 310 conidia onto gorse plants but this did not cause any infection or affect plant growth as determined by shoot fresh weight and shoot height. E. postvittana on its own did not cause any significant damage to gorse and did not enhance F. tumidum infection. It also failed to spread the pathogen from infected plants to the healthy ones. There was no evidence of synergism between the two agents and damage caused by the combination of both E. postvittana and F. tumidum was equivalent to that caused by F. tumidum alone. This study has shown that E. postvittana has the greatest capacity to vector F. tumidum since it naturally carried the largest and the most fungal spores (429 CFU/insect). Moreover, it naturally carried Fusarium spp. such as F. lateritium, F. tricinctum and Gibberella pulicaris (anamorph Fusarium sambucinum) and was capable of carrying and depositing most F. tumidum conidia on agar. Coupled with the availability of pheromone for attracting the male insects, E. postvittana may be a suitable insect vector for delivering F. tumidum conidia on gorse using this novel biocontrol strategy. Although it is a polyphagous insect, and may visit non-target plants, F. tumidum is a very specific pathogen of gorse, broom and a few closely related plant species. Hence, using this insect species to vector F. tumidum in a biological control programme, should not pose a significant threat to plants of economic importance. However, successful control of gorse using this "lure-load-infect" concept would depend, to a large extent on the virulence of the pathogen as insects, due to the large size of F. tumidum macroconidia, can carry only a small number of it.
37

Requirement of phosphoinositol-derived signals in the wounding response of Arabidopsis thaliana / Die Rolle von Phosphoinositol-Signalen in der Verwundungsantwort von Arabidopsis thaliana

Mosblech, Alina 04 October 2010 (has links)
No description available.
38

Constituição química, avaliação da atividade imunoadjuvante e estudos de propagação de quillaja brasiliensis / Chemical composition, adjuvant activity evaluation and propagation studies of quillaja brasiliensis

Fleck, Juliane Deise January 2007 (has links)
Quillaja brasiliensis (A. St.-Hil. &Tul.) Mart. é uma espécie nativa do Rio Grande do Sul, conhecida popularmente como pau-sabão, devido à capacidade de suas folhas e cascas formarem abundante espuma em água. A espécie congênere chilena, Q. saponaria, é uma das principais fontes industriais de saponinas, as quais são utilizadas, entre outros, como adjuvantes em vacinas. Tendo em vista a presença de saponinas em Q. brasiliensis, métodos por cromatografia em camada delgada (CCD) e cromatografia líquida de alta eficiência (CLAE) foram desenvolvidos para a caracterização e o doseamento de fração purificada de saponinas, a partir do extrato aquoso de folhas, denominada QB-90. Ensaios para verificar a toxicidade subcutânea e o perfil dose-dependente para atividade adjuvante também foram realizados com esta fração. Para o doseamento de QB-90 no extrato aquoso foi desenvolvido e validado um método por CLAE empregando coluna de fase reversa C8, sistema isocrático acetonitrila:água, fluxo de 0,8 ml/min e detecção a 214 nm. Na validação do método, foram avaliados os parâmetros de linearidade e intervalo de variação, precisão, exatidão, limite de detecção, limite de quantificação e robustez. Em relação à toxicidade subcutânea de QB-90 em camundongos, não foram observados efeitos sistêmicos no intervalo de doses de 50 a 400 μg. Vacinas experimentais preparadas com herpesvírus bovino tipo 1 (BoHV-1) como antígeno e QB-90 (50-200 μg) foram capazes de aumentar a resposta imunológica em camundongos de modo comparável às saponinas de Q. saponaria (QUIL-A®, 100 μg). Com vistas à potencial utilização sustentável da espécie brasileira na obtenção de saponinas de interesse industrial, protocolos básicos de obtenção de plantas de Q. brasiliensis por micropropagação e por germinação de sementes foram desenvolvidos. Para melhor compreender o perfil de acúmulo de QB-90, seu conteúdo foi investigado em diferentes órgãos vegetais, em diferentes estações do ano e durante o desenvolvimento de plântulas, assim como em resposta a fatores de estresses bióticos e abióticos. O conteúdo de QB-90 não foi afetado pela aplicação de ácido salicílico exógeno (5 mM). No entanto, foi aumentado pela aplicação exógena de ácido jasmônico (40 μM e 400 μM), bem como pela exposição à radiação UVC. Tendência de aumento no teor de QB-90 foi observada com a aplicação de dano mecânico controlado e com a exposição à radiação UVB. A distribuição órgão-específica de QB-90 foi avaliada, detectando-se maiorconcentração nas folhas do que em raízes e caules de plantas propagadas em laboratório. O teor de QB-90 também foi analisado nas diferentes estações climáticas ao longo de dois anos, indicando que a redução da insolação, geralmente associada a períodos de baixa pluviosidade, está associada à maior produção de QB-90. / Quillaja brasiliensis (A. St.-Hil. & Tul.) Mart. is a native tree of Rio Grande do Sul, the Southern state of Brazil, commonly known as soap tree due to the capacity of their leaves and barks to produce abundant foam in water. The related Chilean species, Q. saponaria, is one of the main sources of industrial saponins which are used as adjuvant formulation for vaccines. Considering the presence of saponins in Q. brasiliensis, thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods were developed to characterize and quantify the purified saponin fraction named QB-90, obtained from the aqueous extract of leaves. Additionally, the subcutaneous toxicity and dose-response profile to adjuvant activity of QB-90 were evaluated in mice. An HPLC method was developed and validated to quantify QB-90 content in aqueous extract, employing RP-8 column, mobile phase acetonitrile:water, flow rate of 0.8 ml/min and detection at 214 nm. The validation parameters evaluated were linearity and range, precision, accuracy, detection limit, quantitation limit and robustness. In relation to QB-90 subcutaneous toxicity in mice, systemic effects were not observed in doses ranging from 50-400 μg. Experimental vaccines prepared with bovine herpesvirus type I (BoHV-1) antigen and QB-90 (50- 200 μg) were able to enhance the immune responses of mice in a comparable manner to saponins from Q. saponaria (QuilA, 100 μg). Considering the potential sustainable utilization of the Brazilian species as a source of saponins of industrial use, basic protocols for obtaining Q. brasiliensis plants by micropropagation and seed germination were developed. To better understand the accumulation patterns of QB-90, we investigated its content in different plant organs; throughout the seasons and during seedling development, as well as in response to potential biotic and abiotic stress factors. Content of QB-90 wasn’t affected by exogenous application of salicylic acid (5mM). However, it was increased by exogenous application of jasmonic acid (40 μM and 400 μM), as well as by exposure to UVC. Trends toward increase in QB-90 content were observed with exposure to UVB and wounding. The organ-specific QB-90 distribution was evaluated and higher amounts were observed in leaves than roots and stems of plants propagated in the laboratory. Variations inQB-90 content in different seasons for two years showed that lower insolation, generally combined with low precipitation periods, were associated with higher QB- 90 content.
39

Constituição química, avaliação da atividade imunoadjuvante e estudos de propagação de quillaja brasiliensis / Chemical composition, adjuvant activity evaluation and propagation studies of quillaja brasiliensis

Fleck, Juliane Deise January 2007 (has links)
Quillaja brasiliensis (A. St.-Hil. &Tul.) Mart. é uma espécie nativa do Rio Grande do Sul, conhecida popularmente como pau-sabão, devido à capacidade de suas folhas e cascas formarem abundante espuma em água. A espécie congênere chilena, Q. saponaria, é uma das principais fontes industriais de saponinas, as quais são utilizadas, entre outros, como adjuvantes em vacinas. Tendo em vista a presença de saponinas em Q. brasiliensis, métodos por cromatografia em camada delgada (CCD) e cromatografia líquida de alta eficiência (CLAE) foram desenvolvidos para a caracterização e o doseamento de fração purificada de saponinas, a partir do extrato aquoso de folhas, denominada QB-90. Ensaios para verificar a toxicidade subcutânea e o perfil dose-dependente para atividade adjuvante também foram realizados com esta fração. Para o doseamento de QB-90 no extrato aquoso foi desenvolvido e validado um método por CLAE empregando coluna de fase reversa C8, sistema isocrático acetonitrila:água, fluxo de 0,8 ml/min e detecção a 214 nm. Na validação do método, foram avaliados os parâmetros de linearidade e intervalo de variação, precisão, exatidão, limite de detecção, limite de quantificação e robustez. Em relação à toxicidade subcutânea de QB-90 em camundongos, não foram observados efeitos sistêmicos no intervalo de doses de 50 a 400 μg. Vacinas experimentais preparadas com herpesvírus bovino tipo 1 (BoHV-1) como antígeno e QB-90 (50-200 μg) foram capazes de aumentar a resposta imunológica em camundongos de modo comparável às saponinas de Q. saponaria (QUIL-A®, 100 μg). Com vistas à potencial utilização sustentável da espécie brasileira na obtenção de saponinas de interesse industrial, protocolos básicos de obtenção de plantas de Q. brasiliensis por micropropagação e por germinação de sementes foram desenvolvidos. Para melhor compreender o perfil de acúmulo de QB-90, seu conteúdo foi investigado em diferentes órgãos vegetais, em diferentes estações do ano e durante o desenvolvimento de plântulas, assim como em resposta a fatores de estresses bióticos e abióticos. O conteúdo de QB-90 não foi afetado pela aplicação de ácido salicílico exógeno (5 mM). No entanto, foi aumentado pela aplicação exógena de ácido jasmônico (40 μM e 400 μM), bem como pela exposição à radiação UVC. Tendência de aumento no teor de QB-90 foi observada com a aplicação de dano mecânico controlado e com a exposição à radiação UVB. A distribuição órgão-específica de QB-90 foi avaliada, detectando-se maiorconcentração nas folhas do que em raízes e caules de plantas propagadas em laboratório. O teor de QB-90 também foi analisado nas diferentes estações climáticas ao longo de dois anos, indicando que a redução da insolação, geralmente associada a períodos de baixa pluviosidade, está associada à maior produção de QB-90. / Quillaja brasiliensis (A. St.-Hil. & Tul.) Mart. is a native tree of Rio Grande do Sul, the Southern state of Brazil, commonly known as soap tree due to the capacity of their leaves and barks to produce abundant foam in water. The related Chilean species, Q. saponaria, is one of the main sources of industrial saponins which are used as adjuvant formulation for vaccines. Considering the presence of saponins in Q. brasiliensis, thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods were developed to characterize and quantify the purified saponin fraction named QB-90, obtained from the aqueous extract of leaves. Additionally, the subcutaneous toxicity and dose-response profile to adjuvant activity of QB-90 were evaluated in mice. An HPLC method was developed and validated to quantify QB-90 content in aqueous extract, employing RP-8 column, mobile phase acetonitrile:water, flow rate of 0.8 ml/min and detection at 214 nm. The validation parameters evaluated were linearity and range, precision, accuracy, detection limit, quantitation limit and robustness. In relation to QB-90 subcutaneous toxicity in mice, systemic effects were not observed in doses ranging from 50-400 μg. Experimental vaccines prepared with bovine herpesvirus type I (BoHV-1) antigen and QB-90 (50- 200 μg) were able to enhance the immune responses of mice in a comparable manner to saponins from Q. saponaria (QuilA, 100 μg). Considering the potential sustainable utilization of the Brazilian species as a source of saponins of industrial use, basic protocols for obtaining Q. brasiliensis plants by micropropagation and seed germination were developed. To better understand the accumulation patterns of QB-90, we investigated its content in different plant organs; throughout the seasons and during seedling development, as well as in response to potential biotic and abiotic stress factors. Content of QB-90 wasn’t affected by exogenous application of salicylic acid (5mM). However, it was increased by exogenous application of jasmonic acid (40 μM and 400 μM), as well as by exposure to UVC. Trends toward increase in QB-90 content were observed with exposure to UVB and wounding. The organ-specific QB-90 distribution was evaluated and higher amounts were observed in leaves than roots and stems of plants propagated in the laboratory. Variations inQB-90 content in different seasons for two years showed that lower insolation, generally combined with low precipitation periods, were associated with higher QB- 90 content.
40

Constituição química, avaliação da atividade imunoadjuvante e estudos de propagação de quillaja brasiliensis / Chemical composition, adjuvant activity evaluation and propagation studies of quillaja brasiliensis

Fleck, Juliane Deise January 2007 (has links)
Quillaja brasiliensis (A. St.-Hil. &Tul.) Mart. é uma espécie nativa do Rio Grande do Sul, conhecida popularmente como pau-sabão, devido à capacidade de suas folhas e cascas formarem abundante espuma em água. A espécie congênere chilena, Q. saponaria, é uma das principais fontes industriais de saponinas, as quais são utilizadas, entre outros, como adjuvantes em vacinas. Tendo em vista a presença de saponinas em Q. brasiliensis, métodos por cromatografia em camada delgada (CCD) e cromatografia líquida de alta eficiência (CLAE) foram desenvolvidos para a caracterização e o doseamento de fração purificada de saponinas, a partir do extrato aquoso de folhas, denominada QB-90. Ensaios para verificar a toxicidade subcutânea e o perfil dose-dependente para atividade adjuvante também foram realizados com esta fração. Para o doseamento de QB-90 no extrato aquoso foi desenvolvido e validado um método por CLAE empregando coluna de fase reversa C8, sistema isocrático acetonitrila:água, fluxo de 0,8 ml/min e detecção a 214 nm. Na validação do método, foram avaliados os parâmetros de linearidade e intervalo de variação, precisão, exatidão, limite de detecção, limite de quantificação e robustez. Em relação à toxicidade subcutânea de QB-90 em camundongos, não foram observados efeitos sistêmicos no intervalo de doses de 50 a 400 μg. Vacinas experimentais preparadas com herpesvírus bovino tipo 1 (BoHV-1) como antígeno e QB-90 (50-200 μg) foram capazes de aumentar a resposta imunológica em camundongos de modo comparável às saponinas de Q. saponaria (QUIL-A®, 100 μg). Com vistas à potencial utilização sustentável da espécie brasileira na obtenção de saponinas de interesse industrial, protocolos básicos de obtenção de plantas de Q. brasiliensis por micropropagação e por germinação de sementes foram desenvolvidos. Para melhor compreender o perfil de acúmulo de QB-90, seu conteúdo foi investigado em diferentes órgãos vegetais, em diferentes estações do ano e durante o desenvolvimento de plântulas, assim como em resposta a fatores de estresses bióticos e abióticos. O conteúdo de QB-90 não foi afetado pela aplicação de ácido salicílico exógeno (5 mM). No entanto, foi aumentado pela aplicação exógena de ácido jasmônico (40 μM e 400 μM), bem como pela exposição à radiação UVC. Tendência de aumento no teor de QB-90 foi observada com a aplicação de dano mecânico controlado e com a exposição à radiação UVB. A distribuição órgão-específica de QB-90 foi avaliada, detectando-se maiorconcentração nas folhas do que em raízes e caules de plantas propagadas em laboratório. O teor de QB-90 também foi analisado nas diferentes estações climáticas ao longo de dois anos, indicando que a redução da insolação, geralmente associada a períodos de baixa pluviosidade, está associada à maior produção de QB-90. / Quillaja brasiliensis (A. St.-Hil. & Tul.) Mart. is a native tree of Rio Grande do Sul, the Southern state of Brazil, commonly known as soap tree due to the capacity of their leaves and barks to produce abundant foam in water. The related Chilean species, Q. saponaria, is one of the main sources of industrial saponins which are used as adjuvant formulation for vaccines. Considering the presence of saponins in Q. brasiliensis, thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods were developed to characterize and quantify the purified saponin fraction named QB-90, obtained from the aqueous extract of leaves. Additionally, the subcutaneous toxicity and dose-response profile to adjuvant activity of QB-90 were evaluated in mice. An HPLC method was developed and validated to quantify QB-90 content in aqueous extract, employing RP-8 column, mobile phase acetonitrile:water, flow rate of 0.8 ml/min and detection at 214 nm. The validation parameters evaluated were linearity and range, precision, accuracy, detection limit, quantitation limit and robustness. In relation to QB-90 subcutaneous toxicity in mice, systemic effects were not observed in doses ranging from 50-400 μg. Experimental vaccines prepared with bovine herpesvirus type I (BoHV-1) antigen and QB-90 (50- 200 μg) were able to enhance the immune responses of mice in a comparable manner to saponins from Q. saponaria (QuilA, 100 μg). Considering the potential sustainable utilization of the Brazilian species as a source of saponins of industrial use, basic protocols for obtaining Q. brasiliensis plants by micropropagation and seed germination were developed. To better understand the accumulation patterns of QB-90, we investigated its content in different plant organs; throughout the seasons and during seedling development, as well as in response to potential biotic and abiotic stress factors. Content of QB-90 wasn’t affected by exogenous application of salicylic acid (5mM). However, it was increased by exogenous application of jasmonic acid (40 μM and 400 μM), as well as by exposure to UVC. Trends toward increase in QB-90 content were observed with exposure to UVB and wounding. The organ-specific QB-90 distribution was evaluated and higher amounts were observed in leaves than roots and stems of plants propagated in the laboratory. Variations inQB-90 content in different seasons for two years showed that lower insolation, generally combined with low precipitation periods, were associated with higher QB- 90 content.

Page generated in 0.0454 seconds