• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 422
  • 346
  • 128
  • 31
  • 27
  • 22
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1559
  • 1559
  • 1559
  • 340
  • 338
  • 300
  • 287
  • 248
  • 238
  • 234
  • 221
  • 191
  • 163
  • 133
  • 128
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Development of InGaN/GaN nanostructures

Oppo, Carla Ivana 31 January 2017 (has links)
No description available.
732

Vertical charge transport in conjugated polymers

Skrypnychuk, Vasyl January 2017 (has links)
Conjugated polymers are novel organic electronic materials highly important for organic photovoltaic applications. Charge transport is one of the key properties which defines the performance of conjugated polymers in electronic devices. This work aims to explore the charge transport anisotropy in thin films of P3HT, one of the most common conjugated polymers. Using X-ray diffraction techniques and charge transport measurements, the relation between vertical charge transport through thin P3HT films and structure of the films was established. It was shown that particular orientations of crystalline domains of P3HT, namely face-on and chain-on, are beneficial for vertical charge transport. These orientations provide the efficient pathways for the charges to be transported vertically, either via π-π stacking interaction between the adjacent conjugated chains, or via the conjugated chain backbones. It was also demonstrated that particular orientations of crystallites are favourable for the formation of interconnected percolated pathways providing enhanced vertical charge transport across the film. Deposition of P3HT on most commonly used silicon substrates typically results in the formation of mostly edge-on orientation of crystallites which is unfavourable for vertical charge transport. Nanoimprint lithography was demonstrated as a powerful processing method for reorienting the edge-on crystalline domains of P3HT into chain-on (vertical) orientation. It is also shown that thin P3HT films with preferentially face-on orientations of crystallites can be deposited on graphene surface by spin coating. Using patterning of thin P3HT films by nanoimprint lithography, unprecedentedly high average vertical mobilities in the range of 3.1-10.6 cm2 V-1 s-1 were achieved in undoped P3HT. These results demonstrate that charge transport in thin films of a relatively simple and well-known conjugated polymer P3HT can be significantly improved using optimization of crystallinity,orientation of crystallites, polymer chain orientation and alignment in the films.
733

Détermination des contraintes résiduelles dans les matériaux céramiques pour SOFC : mesures multi-échelles et influence des cycles d’oxydo-réduction / Determination of residual stresses in ceramic materials of SOFC : multi-scale measurements and oxido-reduction influence

Villanova, Julie 08 December 2010 (has links)
Les piles à combustible Solid Oxide Fuel Cell sont des systèmes de production d’électricité. Une cellule élémentaire est un multicouche constitué de matériaux céramiques et de métal. Elles sont très sensibles aux contraintes mécaniques générées lors des cycles thermiques et d’oxydo-réduction, limitant leur durée de vie.Ce travail a porté sur la détermination expérimentale des contraintes résiduelles dans des cellules SOFC à anode support en fonction des sollicitations du système. Parallèlement à des mesures in-situ en température, une approche multi-échelles a été développée pour évaluer les hétérogénéités de contraintes dans l’électrolyte liées à la forte anisotropie élastique de la zircone yttriée qui le constitue. Différentes techniques ont été mise en œuvre afin de couvrir les 3 ordres de contraintes. Les mesures à l’échelle macroscopique ont été effectuées par diffraction de rayons X de laboratoire (méthode des sin²(Ψ)). La microdiffraction de rayonnement synchrotron en mode faisceau blanc et monochromatique a permis, après un important travail d’amélioration du protocole de mesure et d’analyse, de déterminer les tenseurs complets de contraintes et déformations grain à grain dans l’électrolyte. Les déformations intra-granulaires ont été évaluées par une technique d’EBSD.Les résultats obtenus ont permis d’analyser les mécanismes principaux qui régissent les évolutions de contraintes dans l’électrolyte. Des hétérogénéités de contraintes entre grains liées à leurs orientations cristallographiques ont été mises en évidence. Au-delà du problème des SOFC, les techniques mises en œuvre ouvrent la voie aux validations expérimentales des modèles mécaniques poly-cristallins. / The Solid Oxide Fuel Cells (SOFC) are high-performance electrochemical devices for energy conversion. A single cell is composed of layers made of different ceramic materials and metal. The mechanical integrity of the cell is a major issue during its lifetime. Damage of the cells is mainly due to the high operating temperature, the “redox” behavior of the anode and the brittleness of the involved materials. In this work, residual stresses in the electrolyte of a planar anode-supported SOFC have been experimentally measured for different treatments of the cell. In situ analysis at various temperatures has been performed. A multi-scale approach has been developed to study the expected strain-stress heterogeneities in the electrolyte due to the strong elastic anisotropy of the involved material (yttria-stabilized zirconia). Different techniques have been used to determinate stresses at the 3 different orders. Macroscopic stresses were studied using the Sin2 method on a laboratory X-ray goniometer. The complete strain and stress tensors of individual grains in the electrolyte have been determinate, after various improvements in the technique, by combining the diffraction of white and monochromatic micro beams produced by synchrotron source. Strain variation into grains has been evaluated using EBSD.This study has identified the main phenomena that control the stresses variation in the electrolyte layer. Stresses heterogeneities from grain to grain have been found and linked to the crystallographic orientation. Beyond SOFC’s considerations, the techniques that have been developed should permit an experimental validation of mechanical modeling to polycrystalline materials.
734

High energy white beam X-ray diffraction studies of strains in engineering materials and components

Zhang, Shu Yan January 2008 (has links)
The primary aim of this research was to develop and improve the experimental method and data interpretation for strain measurements using diffraction methods to gain a better understanding of micromechanical deformation and anisotropy of lattice strain response. Substantial part of the research was devoted to the development of the laboratory high energy X-ray diffractometer (HEXameter) for bulk residual strain evaluation. White beam energy dispersive X-ray diffraction was chosen as the principal diffraction mode due to its extreme efficiency in utilising X-ray flux and its ability to capture large segments of diffraction patterns. The specimens that have been examined were real engineering components, mechanically deformed specimens and thermally treated specimens, ranging from dynamic in-situ measurements to ex-situ materials engineering. For the real engineering components, a wedge coupon from the trailing edge of a Ti64 wide fan blade and a turbine combustion casing were examined. Among the mechanically deformed specimens that have been measured were shot-peened steel plates, elasto-plastically bent bars of Mg alloy and cold expanded Al disks. Amongst the thermally deformed specimens, laser-formed steel plates, thermal spray coatings, a manual inert gas weld of Al plates, a friction stir weld of Al plates and Ni tubes and a quenched Ni superalloy cylinder used for strain tomography were studied. In-situ loading experiments have also been carried out, such as experiments on pointwise mapping of grain orientation and strain using the 3DXRD microscope at the ESRF and in-situ loading experiments on titanium alloy, rheo-diecast and high pressure diecast Mg alloy, IN718 Ni-base superalloy and Al2024 aluminium alloy. Experimental results from X-Ray diffraction and strain tomography were used to achieve a better understanding of the material properties. Some results were compared with polycrystal Finite Element model predictions. Amongst the most prominent research achievements are the development on the HEXameter laboratory instrument, including: (i) the development of special collimation systems for the detectors and the source tube; (ii) the development of a twin-detector setup (that allows for simultaneous determination of strain in two mutually orthogonal directions); (iii) improved alignment procedures for better performance; and (iv) the adaptation of instrumentation for efficient scanning of both large and small components, that included choosing and adapting translation devices, programming of the translation system and designing sample mounting procedures. In this research several approaches to data treatment were investigated. Quantitative phase analysis, single peak fitting (using custom Matlab routines and GSAS) and full pattern fitting (with individual pattern data refined by GSAS and batch refinement done by invoking GSAS via a Matlab routine) were applied. Different Matlab routines were written for specific experimental setups; and various analysis methods were selected and used for refinement depending on the requirements of the measurement results interpretation. 16 papers were published, ensuring that the results of this thesis are readily available to other researchers in the field.
735

The Importance of Controlling Composition to Tailor the Properties of Magnetic Thin Films

Frisk, Andreas January 2016 (has links)
Many physical properties, for example structural or magnetic, of a material are directly dependent on elemental composition. Tailoring of properties through highly accurate composition control is possible in thin films. This work exemplifies such tailoring. A short review is given of the current status for research in the area of permanent magnets, focusing on rare earth element free alternatives, where FeNi in the L10 phase is a possible candidate. Epitaxial FeNi L10 thin films were successfully synthesized by magnetron sputtering deposition of monoatomic layers of Fe and Ni on HF-etched Si(001) substrates with Cu or Cu100-xNix/Cu buffers. The in-plane lattice parameter aCuNi of the Cu100-xNix buffer layer was tuned by the Ni content. Through matching of aFeNi to aCuNi, the strain state (c/a)FeNi was controlled, where c is the out-of-plane lattice parameter. The 001 reflection indicative of chemical order, as measured by resonant x-ray diffraction, was in most cases split in two peaks due to a composition modulation of Fe and Ni. This chemical disorder contributed to that the uniaxial magnetocrystalline anisotropy energy, KU≈0.35 MJ/m3, was smaller than predicted. In later experiments the composition modulation could partly be compensated for. Remaining discrepancies with respect to predicted KU values were attributed to additional disorder induced by surface roughness of the buffer layer. The interface sharpness between Fe and Ni was explored by producing epitaxial symmetric multilayers with individual layer thicknesses n = 4-48 monolayers (ML). For n ≤ 8 ML the films had pure fcc structure, with antiferromagnetic Fe layers. For n ≥ 8 ML the Fe layers relaxed to bcc structure. A combinatorial sputter chamber, which has the capability to deposit samples with composition and thickness gradients, was assembled. A model for simulation of composition and thickness across large substrates, for the conditions in this chamber, is presented. The model is verified by comparison to experimental data. Some challenges inherent in combinatorial sputtering are discussed, and two experimental studies employing the technique are presented as examples. These investigated magnetic and structural properties of Tb-Co films, with 7-95 at.% Tb, and of amorphous and crystalline ternary gradient Co-Fe-Zr films, respectively.
736

Étude de nouveaux complexes de type ansa-chromocène

Charbonneau, Fabien 04 1900 (has links)
Les complexes de la famille des ansa-chromocènes sont relativement peu nombreux, mais ils ont tout de même démontré des réactivités intéressantes comme la possibilité de coordonner une molécule de monoxyde de carbone au centre métallique sans être sous pression constante de gaz, ce qui n’est pas le cas pour l’homologue chromocène. L’ansa-chromocène le plus surprenant est sans doute le Me2Si(C5Me4)2Cr, car il est le seul qui ne comporte pas de ligand autre que celui de type ansa. Cependant, ce composé a été obtenu sans que le mécanisme de la réaction ne soit compris et prouvé, seul un mécanisme proposé a été publié. Au cours de cette étude, le mécanisme proposé a tout d’abord été infirmé grâce à de nombreuses expériences qui ont mené à l’élaboration d’un nouveau mécanisme. Par la suite, la réactivité du Me2Si(C5Me4)2Cr a été approfondie en le faisant réagir avec divers réactifs. Aucun produit d’addition oxydante n’a été isolé, mais la réaction avec l’isonitrile forme un complexe asymétrique avec deux isonitriles coordonnés. La détermination du moment magnétique du composé Me2Si(C5Me4)2Cr confirme la présence de deux électrons non-pairés à la température de la pièce et évoque la possibilité d’une transition à S=2 à température plus élevée. La synthèse de nouveaux complexes de type ansachromocène insaturé a été tentée avec d’autres ligands ansa, et la réaction avec [C2H4(C9H6)2]Li2 mène à un complexe dimérique avec des ligands indényles pontés. / Only a few ansa-chromocenes complexes are known but some of them have shown interesting reactivities such as the ability to coordinate a carbon monoxide molecule to the chromium center without being under continuous gas pressure, which is not the case for the chromocene analogue. The most surprising ansa-chromocene is without doubt Me2Si(C5Me4)2Cr, because it is the only example of an ansa-chromocene lacking additional ligands. However, the compound was obtained by accident and the mechanism of its formation was neither well established nor understood. Only a tentative mechanism was published. During the course of the present study, the proposed mechanism has been disproved by a series of experiments that led to the elaboration of a new mechanism. The reactivity of Me2Si(C5Me4)2Cr has been studied by reactions with various compounds. No oxidative addition product was isolated, but the reaction with isonitrile yielded an asymmetric complex with two isonitriles coordinated to chronium. The determination of the magnetic moment of this complex confirmed two unpaired electrons at room temperature and indicated the possibility of an S=2 transition at higher temperature. The synthesis of new unsaturated ansa-chromocene complexes has been attempted with other ansa ligands, and the reaction with [C2H4(C9H6)2]Li2 led to a dimeric complex with bridged indenyl ligands.
737

Characterization of reaction products in sodium-oxygen batteries : An electrolyte concentration study

Hedman, Jonas January 2017 (has links)
In this thesis, the discharge products formed at the cathode and the performance and cell chemistry of sodium-oxygen batteries have been studied. This was carried out using different NaOTf salt concentrations. The influence of different salt concentrations on sodium-oxygen batteries was investigated since it has been shown that increasing the salt concentration beyond conventional concentrations could result in advantages such as increased stability of the electrolytes towards decomposition, higher thermal stability and lower volatility. An increase in salt concentration has also been shown to influence the electrochemical potential window. The solubility of NaOTf was investigated in two different solvents, DME and diglyme. NaOTf was found to be more soluble in DME compared to diglyme but due to the volatile nature of DME, three different concentrations of NaOTf were prepared with diglyme as solvent. Experimentation involved discharging the batteries to either maximum or limited capacity. The discharge products were examined and characterized using XRD and SEM. The main discharge product was identified as sodium superoxide although sodium peroxide dihydrate was also identified in one battery. A trend of higher capacity and voltage plateaus with higher salt concentration was also found. The influence of trace amounts of water was suggested as one explanation as it works as a catalyst, promoting sodium superoxide cube growth due to improved transportation of superoxide. Another or contributing explanation could be a possible change in donor number with increased salt concentration, resulting in higher solubility and longer lifetime of superoxide, promoting the growth of sodium superoxide cubes.
738

Phosphate Removal and Recovery from Wastewater by Natural Materials for Ecologically Engineered Wastewater Treatment Systems

Curran, Daniel Thomas 01 January 2015 (has links)
Eutrophication due to excess loading of phosphorus (P) is a leading cause of water quality degradation within the United States. The aim of this study was to investigate P removal and recovery with 12 materials (four calcite varieties, wollastonite, dolomite, hydroxylapatite, eggshells, coral sands, biochar, and activated carbon. This was accomplished through a series of batch experiments with synthetic wastewater solutions ranging from 10-100 mg PO₄-P/ L. The results of this study were used to establish large-scale, calcite-based column filter experiments located in the Rubenstein School of Environment and Natural Resources' Eco-Machine. Influent and effluent wastewater samples were routinely collected for 64 days. Measures of filter performance included changes in pH, percent reduction and mass adsorbed of P. After the columns reached saturation, filter media was analyzed for the mineralogical content by X-ray powder diffraction (XRD). In the batch experiments, P removal and recovery varied among the media and across treatments. The best performing minerals were calcite, wollastonite, and hydroxylapatite. Eggshells, activated carbon, and coral sands also reduced and adsorbed P. The remaining materials had the lowest reductions and adsorption of P. Results from batch experiments informed the design of large column filters within the Rubenstein School of the Environment and Natural Resources' Eco-Machine. Removal and adsorption rates of P by the three column filters were similar. The columns achieved an average P reduction of 12.53% (se = 0.98) and an average P adsorption of 0.649 mg PO₄-P/ kg media (se = 0.03) over a 4-h hydraulic retention time. Paired T-tests showed that P reductions were statistically significant (p-value < 0.05) on the majority of sampling dates until the columns reached saturation. Saturation was reached after 31 days for two of the columns and 36 days for the third column. The filter media consistently buffered the pH of the wastewater to approximately 6.0-7.0 with no indication of diminishing buffer capacity after saturation. XRD analysis was not able to detect any P species within the crystalline structure of the filter media. This research contributes to the understanding of how the selected media perform during P removal and recovery programs, while providing information on the performance of large column filters operating within advanced, ecologically engineered wastewater treatment systems.
739

Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics

Eckhardt, Kai, Bon, Volodymyr, Getzschmann, Jürgen, Grothe, Julia, Wisser, Florian M., Kaskel, Stefan 17 March 2017 (has links) (PDF)
The crystal structure of a new bismuth-based light-absorbing material for the application in solar cells was determined by single crystal X-ray diffraction for the first time. (CH3NH3)3(Bi2I9) (MBI) is a promising alternative to recently rapidly progressing hybrid organic–inorganic perovskites due to the higher tolerance against water and low toxicity. Single crystal X-ray diffraction provides detailed structural information as an essential prerequisite to gain a fundamental understanding of structure property relationships, while powder diffraction studies demonstrate a high degree of crystallinity in thin films.
740

Influence de la structure moléculaire sur la structure cristalline et électronique de molécules organiques conjuguées : une étude spectroscopique

Provencher, Françoise January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.1291 seconds