• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 292
  • 47
  • 31
  • 31
  • 24
  • 12
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 589
  • 589
  • 589
  • 96
  • 94
  • 84
  • 77
  • 74
  • 72
  • 69
  • 45
  • 44
  • 44
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Structural studies on determinants of receptor/ligand binding in the tumour necrosis factor and T cell receptor protein families

Marles-Wright, Jon January 2005 (has links)
Protein-protein recognition plays a central role in the surveillance of self and non-self in the mammalian immune system and ultimately in cellular survival within the organism. Two systems of fundamental importance to the immune system are the Tumour Necrosis Factor (TNF) and the T cell receptor (TCR) families. High-throughput methods developed within the Oxford Protein Production Facility have been successfully applied to the production of members of the TNF receptor and ligand superfamilies for structural characterisation. The TNF receptor DR6 was successfully refolded from E.coli inclusion bodies using a rapid-dilution technique and yielded diffraction quality crystals. Data collected from these crystals will be used to obtain an x-ray crystallographic model of DR6. Vascular Endothelial Growth Inhibitor (VEGI) was produced as a soluble recombinant protein in E.coli, and formed a number of poorly diffracting crystals, it is hoped that further trials and optimization of conditions will lead to improved data quality. Lymphotoxin β receptor was produced in a Eukaryotic system. This has shed light on the complications posed by signal peptide cleavage and glycosylation on the production of protein for crystallization trials. TNF superfamily proteins are ideal targets for the design of novel therapeutic agents due to their involvement in a number of disease pathologies. Various methods of molecular docking and small molecule design were applied to the search for potential inhibitors of receptor binding for the TNF ligand proteins TRAIL and BAFF. A number of potential drug leads were identified from the National Cancer Institute drug database. The Natural Killer (NK) T cell restricted TCRs recognise CD1d-presented glycolipid. Determination of the crystal structures of the invariant NK TCR and the NK restricted TCRs 5E and 5B shows that these proteins adopt the canonical structures of class I MHC restricted TCRs. This suggests that the binding of CD1d-glycolipid by these receptors will conform to the same model of binding seen for the class I MHC restricted TCRs.
222

Selective incorporation of the C-F bond as a conformational tool in quadruplex DNA ligand design

Smith, Daniel L. January 2012 (has links)
Chapter 1 provides a general introduction to organofluorine chemistry and focuses on recent developments in fluorination techniques. It also details how the C–F bond influences conformational and physiochemical properties of organic molecules. Chapter 2 highlights the biological role of the telomere, telomerase and quadruplex DNA in cells. It discusses the inhibition of telomerase with small molecules that stabilise quadruplex DNA as a treatment for cancer. An overview of the development of structurally related telomerase inhibitors and recent X-ray crystallographic structural data with BSU6039 and BRACO-19 telomeric DNA is presented. Chapter 3 discusses the synthesis of fluorinated BSU6039 analogues for the investigation of the conformational effects of fluorine in 5-membered rings and its influence on binding with quadruplex DNA. These compounds have been successfully co-crystallised with telomeric DNA and their relative stabilisation of telomeric DNA has been assessed. The latter half of this chapter focuses on the co-crystal structures between (S,S)- and (R,R)-144 with Oxytricha nova telomeric DNA, discussing the key differences between the two stereoisomers. Chapter 4 details the synthesis of fluorinated BRACO-19 analogues. The syntheses of such fluorinated analogues were achieved through a base mediated coupling between 3,6-diaminoacridone and an α-fluorinated-β-amino ester. The α-fluorinated-β-amino ester was synthesised through a deoxyfluorination-mediated approach, using the stereochemistry of natural amino acids. Chapter 5 describes the stereo- and regio- selectivity of deoxyfluorination reactions with dipeptides bearing the β-amino alcohol functionality. Understanding this selectivity enabled the development of a method towards α-fluorination of tertiary amides. The application of this fluorination method with an orthogonally protected tertiary amide is described.
223

6,6’-Dimethoxygossypol: Molecular Structure, Crystal Polymorphism, and Solvate Formation.

Zelaya, Carlos A. 20 May 2011 (has links)
6,6’-Dimethoxygossypol (DMG) is a natural product of the cotton variety Gossypium barbadense and a derivative of gossypol. Gossypol has been shown to form an abundant number of clathrates with a large variety of compounds. One of the primary reasons why gossypol can form clathrates has been because of its ability to from extensive hydrogen bonding networks due to its hydroxyl and aldehyde functional groups. Prior to this work, the only known solvate that DMG formed was with acetic acid. DMG has methoxy groups substituted at two hydroxyl positions, and consequently there is a decrease in its ability to form hydrogen bonds. Crystallization experiments were set up to see whether, like gossypol, DMG could form clathrates. The following results presented prove that DMG is capable of forming clathrates (S1 and S2) and two new polymorphs (P1 and P2) of DMG have been reported.
224

Estudos cristalográficos da proteína ElrR, regulador transcricional do fator de virulência ElrA de Enterococcus faecalis, e indícios de sua interação com a região de ligação ao DNA / Crystallographic studies of the protein ElrR, a transcriptional regulator of the Enterococcus faecalis virulence factor ElrA, and indications of its interaction with DNA fragment

Groote, Michel Conrad Robert De 21 November 2017 (has links)
A ampliação do conhecimento sobre as formas de comunicação, controle e regulação existentes em bactérias traz luz aos avanços no combate das infecções hospitalares que são responsáveis por inúmeros prejuízos relacionados à saúde pública em todo planeta. DUMOULIN et al (2013), descreveram o regulador transcricional (RT) ElrR, que regula positivamente a transcrição do gene elrA, um fator de virulência de Enterococcus faecalis. ElrA apresenta grande similaridade com as internalinas de Listeria monocytogenes, que facilitam a invasão da bactéria ao hospedeiro. ElrR é considerada como pertencente à família Rgg-like de RT exclusivo de bactérias Gram positivas. Por vários motivos a família Rgg foi inserida à superfamília RNPP, gerando a superfamília RRNPP de RT. Os RRNPP fazem parte de um sistema de regulação por quorum sensing (QS), um sistema de comunicação célula-célula dependente de densidade celular, com função associada na ativação ou inibição da expressão de proteínas relacionadas, dentre outros, à virulência, formação de biofilme e esporulação. Para a melhor compreensão do mecanismo de como ocorre a ativação da transcrição do fator de virulência ElrA, este trabalho apresenta resultados de expressão heteróloga em E. coli e purificação das proteínas ElrR e ElrA, bem como resultados de experimentos biofísicos que caracterizam algumas propriedades estruturais e biológicas destas proteínas. Utilizando técnicas de cromatografia, espectroscopia de dicroísmo circular (CD), anisotropia de fluorescência, espalhamento dinâmico de luz (DLS), cristalografia de raios X e ressonância plasmônica de superfície (SPR), foi possível a obtenção da estrutura tridimensional de ElrR e de indícios da interação com uma região de 25bp do DNA. Realizou-se ainda, em colaboração com Dra. Pascale Serror, a tentativa de obtenção da molécula autoindutora (AI) de ElrR. São apresentados primeiros resultados da obtenção heteróloga de ElrA, sua purificação e cristalização, com importantes características que permitirão a continuação da investigação deste fator de virulência. ElrR é composta somente por alfa-hélices e apresenta-se dimérico em solução. Apesar da similaridade estrutural dos RRNPP, a identidade da sequência entre ElrR e os outros membros é extremamente baixa, o que motivou a resolução das fases cristalográficas experimentalmente. A estrutura de ElrR apresenta-se similar às homólogas, porém, com maior interface de interação entre os protômeros, que formam o dímero. O sítio de ligação do AI, em ElrR, apresenta-se mais amplo, com cavidade maior que as demais estruturas estudadas, conservando vários dos resíduos apresentados nos homólogos que realizam a estabilização do AI. Os altos fatores de temperatura dos cristais de ElrR, adicionado a anisotropia dos átomos, de uma das estruturas obtidas, apresenta a grande flexibilidade desse RT. Os indícios de interação entre ElrR e DNA aqui apresentados, obtidos por SPR e anisotropia de fluorescência, apresentam que ElrR liga especificamente ao fragmento proposto do DNA, ainda na ausência do AI. A não cristalização do complexo (ElrR-DNA), adicionada a alta flexibilidade apresentada na estrutura e a instabilidade observada na ligação ao DNA (por SPR) apontam para a obrigatoriedade da molécula de regulação (AI) para que o complexo ElrR-DNA seja estável. / The enhancing of the knowledge about communication, control and regulation in bacteria bring possibilities on the advance of hospital-acquired infections control responsible for various prejudices related to public health worldwide. DUMOULIN, et al (2013) described ElrR, a transcriptional regulator (TR), that positively regulates transcription of the elrA gene, which codifies a virulence factor of Enterococcus faecalis. ElrA shows high similarity with Listeria monocytogeneses internalins, which facilitates host invasion by these bacteria. ElrR are considered belonging to Rgg-like TR family exclusive of Gram positive bacteria. Several reasons include the Rgg family into the RNPP superfamily, generating the RRNPP superfamily of TR. The RRNPP are controlled by a quorum sensing (QS) regulation system, a cell-cell communication system based on cellular density that activates or inhibits the expression of proteins related with virulence, biofilm formation, sporulation, and others. For a better understanding of the transcription activation mechanism of ElrA, this work shows ElrR and ElrA heterologous expression in E. coli and purification of these proteins, as well as biophysics assays to characterize some structural and biological features of both proteins. Using chromatography, circular dichroism (CD), fluorescence anisotropy, dynamic light scattering (DLS), X-ray crystallography and surface plasmon resonance (SPR) technics, it was possible to obtain the tridimensional structure of ElrR, and evidences of ElrR-DNA complex formation, confirming DNA interaction site of ElrR with a 25 bp fragment. In collaboration with Dr. Pascale Serror, we attempted to achieve the ElrR auto-induction (AI) molecule. Also, results of the heterologous obtainment of ElrA are presented, as well as ElrA purification and crystallization, presenting important characteristics which will allow the further investigation of this virulence factor in near future. ElrR is composed by alpha-helices presenting dimeric fold in solution. Despite the similarity between the RRNPP members, the low identity of ElrR to the other members motivates the experimental crystallographic phases solution. ElrR structure is very similar to the homologous structures, presenting a higher interface between the protomers that compose the dimer. Its AI binding site is wider than the other structures studied, conserving several amino acid residues presented at the homologous proteins, that stabilizes the AI molecule. High temperature factors of the amino acid residues showed in all the obtained ElrR crystallographic structures plus the anisotropy of the atoms in one of those structures show the high flexibility of this TR. The evidence of the ElrR-DNA complex presented in this study, obtained by SPR and fluorescence anisotropy, indicates that ElrR binds at the proposed DNA site even in the absence of the AI molecule. The failure to obtain the ElrR-DNA complex crystals added to the high flexibility presented at some places of the structure and the observed instability at the formed complex (observed at SPR) suggest the mandatory need of the AI molecule to create a stable ElrR-DNA complex.
225

Understanding the Allosteric Transition in Escherichia coli Aspartate Transcarbamoylase through a Novel R-State Structure

Dusinberre, Kelly Jean January 2005 (has links)
Thesis advisor: Evan R. Kantrowitz / A full understanding of an enzyme's catalytic mechanism and a crystal structure representative of its in vivo form are powerful tools in computational drug screening and design. In the case of aspartate transcarbamoylase (ATCase), an allosteric enzyme, the mechanism and allosteric transition are still being explored. The crystallization of the ATCase mutant Asp236 to alanine, a T-state destabilized mutant, in the presence of phosphonoacetamide (PAM) by microdialysis was successful at pH 5.7. The enzyme crystallized in the R-state in the presence of only one substrate analogue. Globally the enzyme had converted to R, but the active site domains are more open than previously observed. Due to the ordered nature of the reaction, the R-state active site exists with a variety of small molecules bound at different times through out the course of the reaction. This structure shows an R-state active site with only one substrate analogue bound, and may therefore represent the R active site after catalysis has occurred and the active site is binding new substrates to perform its reaction again. Docking studies of small molecules can be conducted using this more open, emptier active site as it may be more representative of an in vivo conformation of the enzyme just before catalysis. Additionally, Arg296, previously unobserved as part of the active site, makes a hydrogen bonding interaction with the PAM molecule. The role of this residue will require further investigation. / Thesis (BS) — Boston College, 2005. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Chemistry. / Discipline: College Honors Program.
226

Crystallization of Janus-Wedge Triplexes by Hanging Drop Vapor Diffusion

Hemak, Michael Joseph January 2005 (has links)
Thesis advisor: Larry W. McLaughlin / The ability to control gene expression has traditionally been pursued at the protein level, using drugs designed to mimic a natural substrate or to disrupt a protein's active site. Traditional drug targeting by competitive and non-competitive inhibitors, however, requires a fairly detailed knowledge of the target protein's three-dimensional structure. More recently, focus has broadened to include alternative methods of genetic control, including the use of single-stranded DNA or RNA probe sequences which control gene expression by targeting the genes themselves. Within the last two decades, peptide nucleic acids (PNAs) – DNA mimics possessing natural bases linked to an N-(2-aminoethyl)-glycine (AEG) backbone – have proven as effective in gene-targeting as traditional synthetic DNA or RNA with the added advantages of tighter binding and greater specificity. Additionally, PNAs are not easily recognized by nucleases, proteases, and peptidases giving them greater resistance to enzyme degradation and making them even more favorable for gene targeting in vivo. Traditional PNA triplexes are composed of two polypyrmidine PNA strands bound to the Watson-Crick and Hoogsteen faces, respectively, of the polypurine strand of target DNA after displacing the polypyrimidine strand of the original DNA duplex. Janus Wedge (JW) residues, on the other hand, utilize unnatural bases linked to the AEG backbone, which are capable of hydrogen bonding to the Watson-Crick faces of both strands of a target DNA duplex. JW triplex formation, then, has a DNA2-PNA stoichiometry, and no Hoogsteen face interactions. The generalization of the DNA duplex targeting strategy by peptide oligomers requires substantial discoveries in the field of PNA research, including an understanding of the three-dimensional structure and folding pattern of these triple-stranded molecules. This report details the crystallization efforts on JW DNA-peptide-DNA triplexes using 11dC811-11T811 target sequences – with and without single base overhangs – and synthetic W8K peptide. Hanging drop vapor diffusion methods showed that while crystal formation was extremely elusive, in narrowing the optimal buffer conditions, 25% PEG concentration was consistently correlated with the most promising crystallization efforts for both the overhanged and non-overhanged sequences. / Thesis (BS) — Boston College, 2005. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Chemistry. / Discipline: College Honors Program.
227

Planejamento racional de drogas contra tripanosomatídeos: gGAPDH de Trypanosoma cruzi e XPRT de Leishmania major / Rational design of anti-trypanosomatids drugs: T. cruzi gGAPDH and Leishmania major XPRT

Castilho, Marcelo Santos 27 February 2004 (has links)
Com o objetivo de descobrir moléculas com atividade inibitória contra enzimas alvo de tripanosomatídeos, as estruturas cristalográficas da enzima gliceraldeído-3-fosfato desidrogenase em complexo com dois análogos de 1,3-bisfosfoglicerato (compostos 30 e 33) foram determinadas por difração de raios X, estudos de modelagem molecular foram realizados e o gene xprt (xantina fosforibosiltransferase) de Leishmania major foi clonado e super-expresso em Escherichia coli, e a enzima correspondente foi purificada e caracterizada cinéticamente. O complexo gGAPDH-33 foi determinado até 2,5A e revelou como esse análogo do intermediário tiocetal se liga na enzima. O modelo final da proteína com o inibidor foi refinado utilizando um conjunto de dados com 97,5% de completeza, com um R final de 0,20. Essa estrutura cristalográfica fornece a primeira evidência experimental do mecanismo flip-flop, que descreve como o substrato se desloca do sítio de ligação do fosfato inorgânico para o sítio do fosfato orgânico. O complexo gGAPDH-30 foi determinado até 2,75A de resolução, a partir de um conjunto de dados com 92,4% de completeza e revela o modo de interação dessa classe de inibidores com a gGAPDH. O modelo final apresenta R igual a 0,19. Essa estrutura foi utilizada para estudos de modelagem molecular que explicam a diferença de atividade dessa classe de inibidores entre a gGAPDH de Trypanosoma cruzi e de Trypanosoma brucei. Com relação a XPRT de L. major, essa enzima apresenta uma grande afinidade por hipoxantina, quando comparada a enzima homóloga de L. donovani. Com a finalidade de tentar entender esse comportamento, estudos de modelagem por homologia estão sendo realizados. / Aiming at discover molecules with good inhibitory activity against tripanosomatides enzymatic targets, the crystallographic structures of glyceraldehydes-3-phosphate dehydrogenase in complex with 1,3 bisfosfoglyceric acid analogues (30 and 33)were solved, molecular modeling studies were undertaken and xprt (xanthine phosphorybosil transferase) gene from Leishmania major was cloned and over-expressed in Escherichia coli. The enzyme thus obtained was purified and kinetically characterized. .gGAPDH-33 complex, up to 2,5A resolution revealed the tioketal intermediate binding mode. The final model was refined to R 0.20 from a 97,5% completeness dataset. The crystallographic structure gives, for the first time, experimental evidence for the flip-flop mechanism, which describes how the substrate goes from inorganic-phosphate binding site to substratephosphate binding site. gGAPDH-30 complex, solved to 2,75A resolution, revealed the inhibitor binding mode. The final model has R= 0,19 and was refined from a 92,4% completeness dataset. This structure was used as the framework upon which modeling studies were performed. Modeling results suggest why these inhibitors show a different inhibitory profile against Trypanosoma brucei and Trypanosoma cruzi. L. major XPRT shows a high affinity for hypoxanthine, an alternative substrate, when compared to L. donovani XPRT, aiming at understand this behavior homology modeling studies are currently under progress.
228

Caracterização funcional e estrutural de uma enzima lipolítica encontrada na biblioteca metagenômica de solo de Terra Preta de Índio. / Functinal and structural characterization of lipolytic enzyme present in soil metagenomic library of Terra Preta de Índio.

Carvalho, Cecília Fonseca 07 August 2015 (has links)
A construção de bibliotecas metagenômicas tornou possível o acesso ao potencial biotecnológico de micro-organismos não cultiváveis. O solo é um habitat pouco explorado, com elevada diversidade bacteriana que possuem genes codificadores de enzimas de interesse industrial, chamadas de biocatalisadores naturais. Dentre estas, destacam-se as enzimas lipolíticas, lipases e esterases, por promoverem a hidrólise de matérias-primas de alto valor agregado e com muitas aplicações biotecnológica. Devido a necessidade, existe uma constante busca para isolar novos genes com diferentes especificações. Neste trabalho, o gene lip4, isolado de biblioteca metagenômica de solo, foi superexpresso, purificado e identificado como membro da família V das lipases bacterianas. Tem atividade ótima hidrolisando triacilglicerol de cadeia média em pH alcalino sem presença de íons. A estrutura cristalográfica obtida identificou o dobramento conservado das α/β hidrolases e a tríade catalítica, Ser94-Asp217-His245, além da presença do domínio CAP, comum nas esterases. / Metagenomic libraries construction make possible the access to the biotechnological potential of not cultivated microorganisms. Soil environment has a big bacterial diversity with genes encoding industrial interest enzymes, named natural biocatalysts. Among these, lipolytic enzymes, that includes lipases and estarases, are able to catalyse different biochemistry reaction and promoting raw material hydrolysis with added values. In this overview, a search for new genes with different specifications, allowed isolation by functional screening in tributyrin agar, a gene lip4 from a soil metagenomic library. These gene was overexpressed, purified and identified as a member to family V of bacterial lipases. Presents better activity in alkaline pH with medium chain triacyglycerol without ions. Three dimensional structure of Lip4 identified a conserved α/β hydrolase backbone and the catalytic triad Ser94-Asp217-His245, besides the presence of CAP domain, common structure in esterase.
229

High temperature X-ray diffraction experiments on Pb (Zr, Ti) O3.

January 1993 (has links)
Kwan Wing Tak. / On t.p., "3" is subscript following the word: Pb (Zr, Ti) O" in the title. / Title also in Chinese characters. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves [96-100]). / Acknowledgement / Abstract / Chapter Chapter 1 --- Introduction --- p.1-1 / Chapter Chapter 2 --- Experimental Set-Up and Procedure / Chapter Section 2.1 --- General Description of Experiments --- p.2-1 / Chapter Section 2.2 --- High Temperature X-ray Diffraction Technique --- p.2-1 / Chapter Section 2.3 --- Sawyer-Tower Bridge --- p.2-3 / Chapter Section 2.4 --- Thermomechnical Analysis System(TMS) & Differential Scanning Calorimeter(DSC) --- p.2-4 / Chapter Section 2.5 --- Laser Experiment --- p.2-4 / Chapter Chapter 3 --- X-ray Experimental Results / Chapter Section 3.1 --- Investigation of PZT film on (100) MgO Single Crystal Substrate --- p.3-1 / Chapter Section 3.2 --- Investigaiton of PZT Bulk Materials by X-ray Diffractometer and Vacuum Chamber --- p.3-3 / Chapter Chapter 4 --- Experimental Data from TMS / Chapter Section 4.1 --- Experimental Details --- p.4-1 / Chapter Section 4. 2 --- Results --- p.4-2 / Chapter Chapter 5 --- "Measurement of Curie temperature using Ferroelectric Properties, Heat Capacity and Piezoelectric Properties of PZT" / Chapter Section 5.1 --- Investigation of the Ferroelectric Properties of PZT Bulk Material by Sawyer´ؤTower Bridge --- p.5-1 / Chapter Section 5.2 --- Investigation of the Heat Capacity of PZT Bulk Material by Differential Scanning Calorimeter (DSC) --- p.5-2 / Chapter Section 5.3 --- Investigation of Piezoelectric Properties of PZT Bulk Material by Laser Method --- p.5-3 / Chapter Section 5.4 --- Discussion of Results --- p.5-4 / Chapter Section 5.5 --- Data Summary --- p.5-5 / Chapter Chapter 6 --- Data Analysis and Discussion / Chapter Section 6.1 --- Analysis of Structural X-ray Data --- p.6-1 / Chapter Section 6.2 --- Analysis of TMS Data --- p.6-2 / Chapter Section 6.3 --- Discussion --- p.6-4 / Chapter Chapter 7 --- Conclusion --- p.7-1 / Reference
230

Structural and functional studies of proteins from the Hippo signalling pathway

Cherrett, Claire January 2011 (has links)
The paralogous multi-functional adaptor proteins YAP and TAZ are nuclear effectors of the Hippo pathway, a central regulator of developmental organ size control, tissue homeostasis and tumour suppression. YAP/TAZ target the TEAD transcription factor family to promote cell survival and inhibit apoptosis. TEAD proteins contain a DNAbinding domain and a YAP/TAZ interaction domain. PCR analysis of medaka fish TEAD cDNA revealed the presence of alternative TEAD splice-forms with variations at the C-terminus of the DNA-binding domain. Structural analysis indicated the YAPbinding domain of TEAD proteins is folded and globular. NMR spectroscopy showed that the TEAD binding domain of YAP does not contain secondary structure. YAP and TAZ both contain WW domains, which are small protein-protein interaction modules. Two YAP isoforms are known, YAP1 and YAP2 that contain one and two WW domains, respectively. To date, only a single WW isoform of TAZ has been described. PCR analysis of medaka TAZ cDNA identified both single WW and tandem WW isoforms of TAZ. NMR spectroscopy was used to characterise structural, conformational, and peptide binding features of the tandem WW domains from YAP and TAZ. The YAP WW2 solution structure confirms that the domain has the canonical anti-parallel β-sheet WW fold. WW1 of YAP and both WW domains of TAZ undergo conformational exchange. The region linking the two WW domains is flexible and allows interaction of both WW domains with peptides containing single and dual PPxY binding motifs. In addition to YAP and TAZ, tandem WW domains are also present in the core and upstream Hippo pathway proteins Salvador and Kibra. Both proteins contain one atypical WW domain; the tandem WW domains of these two proteins are unstable. Understanding structure and function of Hippo pathway components could contribute to drug development and will also contribute to knowledge of protein folding and interactions.

Page generated in 0.0535 seconds