• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 20
  • 13
  • 13
  • 4
  • 1
  • Tagged with
  • 233
  • 233
  • 233
  • 156
  • 84
  • 56
  • 41
  • 41
  • 37
  • 37
  • 32
  • 32
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

X-ray absorption spectroscopy by means of Lanczos-chain driven damped coupled cluster response theory

Fransson, Thomas January 2011 (has links)
A novel method by which to calculate the near edge X-rayabsorption fine structure region of the X-ray absorption spectrum has been derived and implemented. By means of damped coupled cluster theory at coupled cluster levels CCS, CC2, CCSD and CCSDR(3), the spectra of neon and methane have been investigated. Using methods incorprating double excitations, the important relaxation effects maybe taken into account by simultaneous excitation of the core electron and relaxation of other electrons. An asymmetric Lanczos-chain driven approach has been utilized as a means to partially resolve the excitation space given by the coupled cluster Jacobian. The K-edge of the systems have been considered, and relativistic effects are estimated with use of the Douglas--Kroll scalar relativistic Hamiltonian. Comparisons have been made to results obtained with the four-component static-exchange approach and ionization potentials obtained by the {Delta}SCF-method. The appropriate basis sets by which to describe the core and excited states have been been determined.  The addition of core-polarizing functions and diffuse or Rydberg functions is important for this description. Scalar relativistic effects accounts for an increase in excitation energies due to the contraction of the 1s-orbital, and this increase is seen to be 0.88 eV for neon. The coupled cluster hierachy shows a trend of convergence towards the experimental spectrum, with an 1s -> 3p excitation energy for neon of an accuracy of 0.40 eV at a relativistic CCSDR(3) level of theory. Results obtained at the damped coupled cluster and STEX levels of theory, respectively, are seen to be in agreement, with a mere relative energy shift.
52

Chemical vapor deposition of diamond thin films on titanium silicon carbide

Yang, Songlan 21 September 2009 (has links)
Chemical vapor deposition (CVD) has been the main method for synthesizing diamond thin films on hetero substrate materials since 1980s. It has been well acknowledged that both nucleation and growth of diamond on non-diamond surfaces without pre-treatment are very difficult and slow. Furthermore, the weak adhesion between the diamond thin films and substrates has been a major problem for widespread application of diamond thin films. Up to now, Si has been the most frequently used substrate for the study of diamond thin films and various methods, including bias and diamond powder scratching, have been applied to enhance diamond nucleation density. In the present study, nucleation and growth of diamond thin films on Ti3SiC2, a newly developed ceramic-metallic material, using Microwave Plasma Enhanced (MPE) and Hot-Filament (HF) CVD reactors were carried out. In addition, synchrotron-based Near Edge Extended X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) was used to identify the electronic and chemical structures of various NCD films. The results from MPECVD showed that a much higher diamond nucleation density and a much higher film growth rate can be obtained on Ti3SiC2 compared with on Si. Consequently, nanocrystalline diamond (NCD) thin films were feasibly synthesized on Ti3SiC2 under the typical conditions for microcrystalline diamond film synthesis. Furthermore, the diamond films on Ti3SiC2 exhibited better adhesion than on Si. The early stage growth of diamond thin films on Ti3SiC2 by HFCVD indicated that a nanowhisker-like diamond-graphite composite layer, different from diamond nucleation on Si, initially formed on the surface of Ti3SiC2, which resulted in high diamond nucleation density. These results indicate that Ti3SiC2 has great potentials to be used both as substrates and interlayers on metals for diamond thin film deposition and application. This research may greatly expand the tribological application of both Ti3SiC2 and diamond thin films. The results demonstrated that NEXAFS is a reliable and powerful tool to identify NCD films.
53

Spectroscopic study of transition metal compounds.

Choudhury, Sanjukta 30 August 2010 (has links)
The electronic structure of some transition metal compounds, specifically, Ca-doped LaMnO3, fundamental Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2), and Fe-doped ZnO is studied using a combination of soft X-ray spectroscopy and atomic multiplet calculations. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are used as experimental tools to probe the unoccupied and occupied partial density of electronic states,respectively.<p> Ca-doped LaMnO3 perovskites have attracted great attention due to their colossal magnetoresistance and a wide range of magnetic and structural transitions. The magnetic and charge transport properties of these perovskites are directly related with Mn 3d-occupancy or Mn-valency and therefore, an investigation of the Mn-valence at Ca-doped LaMnO3 system is important. In this system, the Mn-valency is generally considered as a mixture of Mn3+ and Mn4+. But my research suggests the presence of Mn2+ at the surface of Ca-doped LaMnO3 samples. It is observed that increasing Ca-doping decreases Mn2+ concentration, and conversely, increases Mn3+ concentration. High temperature annealing at 1000 °C in air leads to the full reduction of surface Mn2+. Mechanisms for these observations are proposed in this study.<p> Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2) are often used as reference standards for determining the Mn-valency in Mn-related complex systems and therefore a detailed understanding of their electronic structure is necessary. The Mn L2,3 XAS and O K XAS are measured for the four Mn oxides consisting of three common Mn oxidation states (Mn2+ in MnO, Mn3+ in Mn2O3, mixture of Mn2+ and Mn3+ in Mn3O4, and Mn4+ in MnO2). A significant energy shift with a systematic trend is observed in measured Mn L2,3 and O K absorption edges. These energy shifts are identified as a characteristic shift for different Mn oxidation states. Mn L2,3 Resonant Inelastic X-ray Scattering (RIXS) spectroscopy is demonstrated as a powerful tool in describing low energy excitations, e.g. d-d excitations and charge-transfer excited states in Mn oxides. For the first time, a RIXS study of Mn2O3,Mn3O4, and MnO2 is accomplished. Atomic multiplet calculations are used to successfully reproduce the energy positions and intensity variations of d-d excitation peaks observed in the experiment, and thus to describe the experimental RIXS spectra.<p> Finally, the local electronic structure of Fe implanted ZnO samples, a useful diluted magnetic semiconductor for spintronics, is investigated to shed light on the existing debate about the origin of ferromagnetism in these materials. Fe L2,3 XAS reveals that doped Fe ions are present in both Fe2+ and Fe3+ valence states. A combined theoretical and experimental study shows that doped ions are incorporated into Zn-sites of ZnO in tetrahedral symmetry. Fe L3- RIXS measurements demonstrate that a high Fe-ion dose of 8 × 107 cm-2 causes formation of FeO clusters, while low dose samples exhibit more free carriers.
54

The physical properties of hydrogenated Co-doped ZnO thin films deposited at room temperature by RF-magnetron sputtering system

Lin, Yu-Tsung 07 September 2011 (has links)
The roles of hydrogen induced defects in pure ZnO has been studied extensively. However, in a transition metal, such as Co, doped ZnO thin films the effect of hydrogen in electric conduction and magnetic coupling is still unclear and needs further study. Recently model predicts that hydrogen can be a shallow donor as well as an agent to induce ferromagnetism coupling between two adjacent Co ions which substitute the Zn sites at room temperature in a ZnO sample with a high Co doping ratio. However, the experimental supports is rare. In this study, Co-doped(5%) ZnO films are grown by a RF-magnetron sputtering system on glass substrate at room temperature. The growth condition is fixed for RF power in 200W, working press of 70 mtorr and various mixing ratio of H2/Ar+H2 gas. The crystal structure, electric and optical properties and the influence of vacuum annealing on the samples are studied. In this research, we found that the doping of hydrogen in Co-doped ZnO thin films truly increases the electric conductivity which is proportional to the H2/(Ar+H2) ratio. When the ratio of hydrogen is low, the (002) peak taken by a Glazing Angle X-ray Diffractometer dominates, while increasing hydrogen ratio other diffraction peaks appear, indicating an enhancement of crystal structure in all directions, and grain sizes and unit cell volume decrease. From the optical transmittance measurement, it is found that the color of films turned into metallic like and the optical band gap increases linearly with H2 ratio which can be attributed to the Burstein-Moss effect that corresponds to the increasing of carriers in the conduction band by doping of H2. The transmittance data provides the information of the ratio of crystalline and amorphous, which can also be correlated to the AFM results. When the H2 ratio is higher than 30%, more crystals and larger sizes of grains were formed in the films, such that carriers did not need to pass grain boundaries so frequently and experienced less scattering that was actually improve the electric conductivity. The electric conductivity can be even improved by post annealing in H2 environment. Moreover, the Magnetic circular dichroism (MCD) measurement shows that the Co2+ ions does truly substitute on Zn sited in Td symmetry during thin film deposition. The resistance measurement as a function of temperature found the hydrogenated Co-doped thin films are semiconductor conductive. More works are needed to determine the magnetization, identify second phases and Vo by SQUID and X-ray photoelectron spectroscopy.
55

Rossendorf Beamline at ESRF: Biannual Report 2003/2004

Schell, N., Scheinost, A. C. 31 March 2010 (has links) (PDF)
No description available.
56

Report January 1998 - June 1999 Project-Group ESRF-Beamline (ROBL-CRG)

Matz, Wolfgang 31 March 2010 (has links) (PDF)
Bi-annual report on the activities at the ROssendorf BeamLine (ROBL) at the ESRF in Grenoble. The report contains selected contributions on actual research topics, a list of all scheduled experiments, and short experimental reports.
57

Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structure

Weir, Michael Glen 07 February 2011 (has links)
This work describes the synthesis of dendrimer-encapsulated nanoparticles (DENs) and the expansion of the characterization ability for these materials. The dendrimer-template method for the synthesis of nanoparticles allows precise control over the size, composition and structure of nanoparticles in the 40-250 atom range. In this size regime, the surface structure of the nanoparticles dominates their catalytic properties. The long term goal of this research is to correlate the structure of these nanoparticles to their catalytic activity, improving the ability to predict superior catalysts a priori. As a prerequisite for this analysis, the precise structure of the catalytically active nanoparticle must be determined. Characterization of nanoparticles in the 1-2 nm region is significantly more difficult than more commonly used nanoparticles of 3-5 nm diameter or larger. Typical characterization of these nanoparticles involves UV-vis spectroscopy for Mie absorbance and transmission electron microscopy for size analysis. This work involves the use of extended X-ray absorption-fine structure (EXAFS) to determine the local structure of the nanoparticles. For monometallic Pt DENs, EXAFS was combined with UV-vis, TEM, X-ray photoelectron spectroscopy (XPS) and electrochemistry to determine that the Pt system is not simply nanoparticles but a more complex, bimodal state. EXAFS has also been used to differentiate between different bimetallic structures. For PdAu DENs, there are two synthetic methods used. When both metals are reduced simultaneously, the resulting nanoparticles have a quasi-random alloy structure. These nanoparticles were then extracted from the dendrimer into an organic solvent by use of alkanethiols. The extraction process changed the alloy structure into Au-core/Pd-shell. When Pd and Au were reduced in sequence, the DENs were formed as a Au-core/Pd-shell material, regardless of the order of the reduction of the metals. The Au-core/Pd-shell structure was also present after extraction. In addition to structural analysis to determine the result of different synthetic methods, EXAFS was also used in situ to measure the structure of Pt DENs during the oxidation of absorbed CO. These in situ measurements are important for determining the structure of the actual catalyst rather than the precursor nanoparticle. In this case, the Pt DENs changed from a bimodal distribution into fully reduced nanoparticles by the application of a reducing potential. The binding of CO to the Pt DENs and subsequent oxidation did not cause measurable agglomeration of the nanoparticles. This reduction of the Pt system by electrochemical means was also explored as a synthetic method. The Pt-dendrimer complex was placed on a TEM grid for electrochemical treatment. A potential step was shown to reduce some of the Pt-dendrimer complexes into Pt nanoparticles of the expected size. However, most of the complexes were not reduced. Therefore, only the standard chemical reduction followed by electrochemical treatment is sufficient to fully reduce the nanoparticle samples. This work has explored additional synthetic methods for the synthesis of monometallic and bimetallic DENs. The use of EXAFS, as well as other advanced characterization techniques, has advanced knowledge of the structure of various DENs. Both the characterization toolset and the synthetic methods will provide a basis for investigations of catalytically active materials. / text
58

Zinc speciation of a smelter contaminated boreal forest site

2013 December 1900 (has links)
HudBay Minerals (formerly the Hudson Bay Mining and Smelting Co., Limited) has operated a Zn and Cu processing facility in Flin Flon, MB since the 1930’s. Located in the Boreal Shield, the area surrounding the mine complex has been severely impacted by both natural (forest fires) and the anthropogenic disturbance, which has adversely affected recovery of the local forest ecosystem. Zinc is one of the most prevalent smelter-derived metals in the soils and has been identified as a key factor limiting natural revegetation of the landscape. Because metal toxicity is related more to speciation than to total concentration, Zn speciation in soils from the impacted landscape was characterized using X-ray absorption fine structure, X-ray fluorescence mapping and µ-X-ray absorption near edge structure. Beginning with speciation at a micro-scale and transitioning to bulk speciation was able to determine Zn speciation and link it to two distinct landform characteristics: (1) soils stabilized by metal tolerant grass species—in which secondary adsorption species of Zn (i.e., sorbed to Mn and Si oxides, and as outer-sphere adsorbed Zn) were found to be more abundant; and (2) eroded, sparsely vegetated soils in mid to upper slope positions that were dominated almost entirely by smelter derived Zn minerals, specifically Franklinite (ZnFe2O4). The long-term effect of liming on pH and Zn speciation was examined using field sites limed by a community led organization over a ten year period. Upon liming to a pH of 4 to 4.5, the eroded, sparsely vegetated soils where found to form a Zn-Al-Hydroxy Interlayer Material (HIM) co-precipitate, reducing the phytotoxicity of both Zn and Al and allowed for boreal forest vegetation to recovery quickly in these areas. The grass stabilized soils experienced a steady pH increase, as compared to a sporadic pH increase in the heavily eroded soils, as the buffering capacity was overcome allowing for a transition between multiple adsorption species based upon the point of zero charge of reactive soil elements. Ultimately reaching a near neutral pH after ten years, this allowed for the formation of stable Zn-Al-layered double hydroxide (LDH) soil precipitates and significantly reduced concentrations of plant available Zn.
59

The many mysteries of graphene oxide

2013 December 1900 (has links)
Graphene, the first two-dimensional crystal ever found, is a material that has attracted fervent and sustained interest from condensed matter researchers from around the world. It has a unique and unprecedented band structure in a bulk material: the bands near the Fermi level are linear, leading to massless charge carriers that propagate at the speed of light. However, graphene does not possess a band gap, and as such, it cannot be used to process information in any electronic device that uses digital logic. Graphene is oxidized when several different basic functional groups like hydroxyls, carboxyls, and epoxides bond to the hexagonal carbon basal plane to make graphene oxide (GO). The result is a nonstoichiometric and highly disordered system that, according to the results shown in this thesis, consists of zones of densely-packed functional groups interspersed between zones of relatively small functional group concentration. This has been confirmed by DFT calculations presented here, which is the first time that a successful simulation of the GO density of states has been compared to X-ray data. Contrary to many assumptions in the literature, many of the features in the density of states of GO are due not to carbon sites bonded to functional groups, but are due to nearby non-functionalized carbon sites. The band gap of graphene oxide is principally controlled by oxidation level. Reduction, followed by heating, will regenerate the near-Fermi states and close the band gap significantly as has been seen by others. However, heating non-reduced graphene oxide can also result in a much-reduced band gap, which occurs because intercalated water can react with the heated GO sample to remove functional groups by creation and eventual expulsion of carbon dioxide. The band gap of GO is further complicated by stacking effects if it is multilayered, because residual pi-conjugated states in neighboring planes interact. The two major types of stacking in graphite are AA-stacking and AB-stacking. AA-stacking interactions cause the pi * resonance to broaden and push states to lower energy, which means that AA-stacking determines the width of the gap in highly oxidized samples. However, direct oxidation of graphene is not the only way that one alter the electronic structure of GO. Other results presented here also show that non-covalent functionalization of graphene oxide by amorphous solid water is a powerful, reversible way to dramatically change the GO electronic structure.
60

Diffraction spectroscopy of metalloproteins

2014 March 1900 (has links)
X-ray absorption is not only element specific, but atom specific: two atoms of the same element in different states or in different neighbourhoods will have slightly different absorption characteristics. These energy dependent atomic form factors are carried over to the diffraction intensities. The atomic form factors are sensitive not only to the the energy of the X-ray but also the diffraction criteria; providing individual local physical data at different ratios in various diffractions. This process is referred to as site selectivity, it is unique to Diffraction Spectroscopy, and is achieved only when the sample is in crystal form. Through this work, a technique has been devised to site-separate two atoms of iron from within a protein, that builds on prior small unit cell Diffraction Anomalous Fine Structure experiments and harnesses the collection and processing software commonly used in large unit cell crystallography. A technique (dev + PCA) has been developed to retrieve the small signals from individual atom-labels out of the large and noisy background of real diffraction taken across a spectrum. The intensity of the diffractions are calculated by integrating over multiple images, profiling spots, merging datasets, and scaling across the whole spectrum. This thesis explores how Diffraction Spectroscopy can be used effectively on large unit cells, namely those of proteins. Site-selective absorption experiments were conducted on large unit cell crystals at a 3rd generation beamline, exclusively using existing equipment. The spectra generated were limited in scope but are an adequate proof of concept.

Page generated in 0.0708 seconds