Spelling suggestions: "subject:"array imaging"" "subject:"foray imaging""
1 |
Developing the soft X-ray performance of CsI-coated microchannel plate detectorsWhiteley, Mark Julian January 1987 (has links)
The initial aim of the work presented in this thesis was to increase the soft x-ray quantum detection efficiency of a tandem-pair microchannel plate detector by the use of a CsI deposition photocathode. This aim was achieved. The coating technique and initial measurements are presented herein. After showing the use of such photocathodes, we investigated their stability and reproducibility. The effects of storage in poor vacuum, high vacuum and desiccated air are presented as is the stability of CsI photocathodes under prolonged X-ray bombardment. One consequence of the use of CsI is that a degree of energy resolution can be conferred upon a microchannel plate detector. We present further research in this field, including measurements performed on detectors with eight micron diameter channels. A feature of microchannel plate operation that is undesirable is the phenomenon of gain degradation. We performed a series of lifetests on a number of microchannel plate detectors.
|
2 |
Contribution of noise to the variance of integrating detectorsMeyer, Thomas Johan 19 April 2010
X-ray medical imaging provides invaluable medical information, while subjecting patients
to hazardous ionizing radiation. The dosage that the patient is exposed to may
be reduced, at the cost of image resolution. A technology that promises lower dosage
for a given resolution is direct conversion digital imaging, typically based on amorphous
Selenium semiconductor. Sufficient exposure should be used for the first exposure to avoid
subsequent exposures; a challenge is then to reduce the necessary exposure for a suitable
image. To quantify how little radiation the detector can reliably discriminate, one needs
an analysis of the variance that 1/f and white noise contribute to the signal of such detectors.
An important consideration is that the dark current, which varies with time, is subtracted from the photo-current, to reduce the spurious spatial variance in the image. In this thesis, the variance that 1/f noise contributes to integrating detectors is analysed, for a very general integrating detector. Experiments were performed to verify the theoretical results obtained for the 1/f noise variance contribution.
|
3 |
Contribution of noise to the variance of integrating detectorsMeyer, Thomas Johan 19 April 2010 (has links)
X-ray medical imaging provides invaluable medical information, while subjecting patients
to hazardous ionizing radiation. The dosage that the patient is exposed to may
be reduced, at the cost of image resolution. A technology that promises lower dosage
for a given resolution is direct conversion digital imaging, typically based on amorphous
Selenium semiconductor. Sufficient exposure should be used for the first exposure to avoid
subsequent exposures; a challenge is then to reduce the necessary exposure for a suitable
image. To quantify how little radiation the detector can reliably discriminate, one needs
an analysis of the variance that 1/f and white noise contribute to the signal of such detectors.
An important consideration is that the dark current, which varies with time, is subtracted from the photo-current, to reduce the spurious spatial variance in the image. In this thesis, the variance that 1/f noise contributes to integrating detectors is analysed, for a very general integrating detector. Experiments were performed to verify the theoretical results obtained for the 1/f noise variance contribution.
|
4 |
Optimising the benefits of spectral x-ray imaging in material decompositionNik, Syen Jien January 2013 (has links)
The extra energy information provided by spectral x-ray imaging using novel photon counting x-ray detectors may allow for improved decomposition of materials compared to conventional and dual-energy imaging. The information content of spectral x-ray images, however, depends on how the photons are grouped together. This thesis deals with the theoretical aspect of optimising material discrimination in spectral x-ray imaging. A novel theoretical model was developed to map the confidence region of material thicknesses to determine the uncertainties in thickness quantification. Given the thickness uncertainties, photon counts per pixel can be optimised for material quantification in the most dose efficient manner. Minimisation of the uncertainties enables the optimisation of energy bins for material discrimination.
Using Monte Carlo simulations based on the BEAMnrc package, material decomposition of up to 3 materials was performed on projection images, which led to the validation of the theoretical model. With the inclusion of scattered radiation, the theoretical optima of bin border energies were accurate to within 2 keV. For the simulated photon counts, excellent agreement was achieved between the theoretical and the BEAMnrc models regarding the signal-to-noise ratio in a decomposed image, particularly for the decomposition of two materials.
Finally, this thesis examined the implementation of the Medipix detector. The equalisation of pixel sensitivity variations and the processing of photon counting projection images were studied. Measurements using the Medipix detector demonstrated promising results in the charge summing and the spectroscopic modes of acquisition, even though the spectroscopic performance of the detector was relatively limited due to electronic issues known to degrade the equalisation process.
To conclude, the theoretical model is sufficient in providing guidelines for scanning parameters in spectral x-ray imaging and may be applied on spectral projection measurements using e.g. the redesigned MedipixRX detector with improved spectroscopic performance, when it becomes available.
|
5 |
Experimental phase retrieval using coherent X-ray diffractionMancuso, Adrian P. Unknown Date (has links) (PDF)
Coherent Diffractive Imaging (CDI) has become an increasingly popular frame work in which to solve the classic phase problem in imaging due to benefits in resolution and the facility of collecting data in this modality. In particular, there is considerable interest in using the short wavelength and high coherence of fourth generation x-ray sources with CDI techniques to phase non-crystalline, or nano-crystalline biomolecular samples. CDI provides an opportunity to determine the structure of proteins and other biological samples which are unable to be phased with the standard techniques of protein crystallography, typically due to lack of adequate crystalline samples. Methods of non-crystalline phase retrieval are legion, however many suffer from limitations in resolution or the inability to recover phase fields containing a pathological singularity. Wavefields containing phase singularities are common in optical fields. The creation of an x-ray wavefield containing a pathological phase singularity is demonstrated. In this thesis a form of CDI termed astigmatic diffraction is presented, that is able tophase uniquely this class of wavefield. This is achieved by illuminating the sample with beams containing known phase curvature. The theory of the method and simulations of its application to a nano-crystalline biomolecule are presented. The experimental recovery of the direction of the phase gradient of a sample illuminated with coherent x-rays produced by a synchrotron source is shown to verify this method.
|
6 |
Vapor deposited europium doped lutetium oxide for X-ray imaging applicationsTopping, Stephen G. January 2012 (has links)
Thesis (Ph.D.)--Boston University / Lutetium oxide doped with europium oxide (Lu20 3:Eu3+) has been established to be a bright, dense scintillator materi al with vast potential in both medical and high resolution X-ray imaging applications. Unfortunately its commercial viability has been restricted due to the manufacturing and post treatment costs associated with device fabrication. This research was aimed at the development of two vapor deposition techniques; chemical and physical vapor deposition (CVD and PVD), to produce coatings of Lu203:Eu3+ for various X-ray imaging applications. A customized CVD process to codeposit Lu20 3 and Eu20 3 was developed using lutetium and europium chloride (LuCb and EuCI3) precursors and reacting with carbon dioxide (C02) and hydrogen (H2) . An in depth study was performed by systematically varying the process parameters to explore the deposition kinetics and identify the rate limiting steps and their effects on the growth morphology using both cold and hot wall CVD reactors. The activation energy for the kinetically limited deposition of Lu20 3 from the LuCI3 - Ar - C02 - H2 system was identified to be approximately 170 kJ/mol , which is significantly lower than expected. The predominant growth orientations were identified to be { 111} and { 100} , depending on the deposition conditions. As the temperature is increased, the growth orientation preference decreases to produce a randomly oriented growth at 1150°C. The scintillation and X-ray imaging characteristics of a co-deposited Lu203:Eu3+ thin film with a {100} orientation were measured, confirming the feasibility and applicability of the CVD system to produce thick scintillator x-ray imaging devices. A fundamental study of the PVD process was performed by sputtering of Lu203:Eu3+ using a single target magnetron sputtering gun. Systematic vatiations of the deposition parameters were used to understand the effect of the ejected flux kinetic energies and deposition rate on the deposit density, stress, optical and scintillation properties. The deposition system was subsequently optimized for rapid, dense growth of a 10 um thick Lu203:Eu3+ coating at elevated temperatures. The X-ray imaging properties were measured and the results
yielded an X-ray imaging resolution slightly better than 1 um with the potential for 0.5 um with further optimization, a level never before attained.
|
7 |
Optical properties of rare-earth doped fluorozirconate glass-ceramics for x-ray detector applicationsOkada, Go 08 July 2010
For high-resolution X-ray imaging scintillator applications, we have prepared and optically characterized divalent samarium doped fluorochlorozirconate (FCZ:Sm2+) glasses and glass-ceramics. Sm2+ doped FCZ glasses were obtained by adding a reducing agent, NaBH4 into the initial melt to convert some of the Sm3+ to Sm2+. However, the Sm2+ concentration at most was estimated to be only approximately 0.003 %. The as-prepared glass samples were further heat treated to obtain glass-ceramics; the nucleation and growth of BaCl2 nanocrystals were confirmed by powdered X-ray diffraction (XRD) experiments. Depending on the heat treatment conditions (temperature and time), the average nanocrystal size varies from 8 to 170 nm, and the sample contains BaCl2 nanocrystals with the orthorhombic and/or hexagonal structure. The optical absorption spectra for our glass-ceramic samples suggested the substitution of Sm2+ ions into the BaCl2 lattice site. The FCZ:Sm2+ glass-ceramics samples showed strong fluorescence in the red region of spectrum (approximately 8 times that of an as-prepared glass), and the transparency can be very high (transmittance > 80 % for samples with thickness about 0.5 mm) and can be equivalent to that of an as-prepared glass . These two results promise potential as a high-resolution X-ray scintillator due to the emission wavelength range and high transparency. Extensive studies of photoluminescence (PL) spectra at low temperatures (12 -- 200 K) for FCZ:Sm2+ glass-ceramics suggested useful indicators of the crystal structure and average size of embedded BaCl2 nanocrystals. A detailed analysis of the optical spectra has lead to the identification of the origin of the emission peaks and the location of Sm ions at specific crystallographic sites. X-ray induced luminescence (XL) studies have suggested a strong dependence of the fluorescence intensity on the concentration of Sm2+ ions. In addition, for more efficient fluorescence, a sample should be heat treated in a hydrogen containing atmosphere (e.g. H2 + Ar gas), and the heat treatment conditions should be such that the nanocrystals grow in the hexagonal structure.
|
8 |
Characterization of alginate scaffolds using X-ray imaging techniquesGuan, Yijing 25 October 2010
Alginate is a popular biomaterial in tissue engineering. When crosslinked with calcium ions (Ca2+), alginate forms a hydrogel which provides necessary mechanical support as a scaffold. The material properties as well as the biological properties of alginate scaffold are of great importance. In this thesis, the aim is to use traditional methods, such as scanning electron microscopy (SEM) and light microscopy, and emerging X-ray imaging techniques, such as micro-computed tomography (micro-CT) and synchrotron radiation (SR) X-ray imaging, to characterize the alginate scaffolds. Firstly, the material properties of freeze-dried alginate scaffolds were evaluated using micro-CT, as it is a non-destructive and non-invasive imaging method, and can provide three-dimensional information. Alginate scaffolds made with different sodium alginate concentrations and frozen to different temperatures were scanned and analyzed in micro-CT. Results indicated that lower freezing temperature and higher sodium alginate concentration lead to smaller pore size and porosity. Secondly, cell culture experiments were carried out to study the biological properties and the interactions of alginate hydrogel with cells. A Schwann cell line was either blended with alginate solution before crosslinking with calcium chloride (CaCl2) or put around alginate gel in the culture dish. Light microscopy of sectioned slices showed that cells surrounding the alginate gel could not grow into the gel, while cells blended with alginate solution before crosslinking could proliferate inside the hydrogel. Cells grown inside a thin slice of alginate gels appeared to be in better condition and were larger in size and also grew in clusters. Thirdly, in order to image soft tissue buried inside alginate gels, such as brain slices, novel imaging methods based on synchrotron radiation (SR) were applied, such as absorption and phase contrast imaging, diffraction-enhanced imaging (DEI) and also combined with computed tomography (CT). Synchrotron-based monochromatic X-ray imaging proved to be good at distinguish objects of similar density, especially biological soft tissue samples, even without any staining material, such as osmium tetroxide (OsO4). These three pieces of research work show the potential in applying the emerging X-ray imaging in soft tissue engineering.
|
9 |
Current Programmed Active Pixel Sensors for Large Area Diagnostic X-ray ImagingSafavian, Nader 28 August 2009 (has links)
Rapid progress over the last decade on large area thin film transistor (TFT) arrays led to the emergence of high-performance, low-power, low-cost active matrix flat panel imagers. Despite the shortcomings associated with the instability and low mobility of TFTs, the amorphous silicon TFT technology still remains the primary solution for the backplane of flat panel imagers. The use of a-Si:H TFTs as the building block of the large area integrated circuit becomes challenging particularly when the role of the TFT is extended from traditional switching applications to on-pixel signal amplifier for large area digital imaging. This is the idea behind active pixel sensor (APS) architectures in which under each pixel an amplifier circuit consisting of one or two switching TFTs integrated with one amplifying TFT is fabricated. To take advantage of the full potential of these amplifiers, it is crucial to develop APS architectures to compensate for the limitations of the TFTs.
In this thesis several APS architectures are designed, simulated, fabricated, and tested addressing these challenges using the mask sets presented in Appendix A. The proposed APS architectures can compensate for inherent stabilities of the comprising TFTs. Therefore, the sensitivity of their output data to the transistor variations is significantly suppressed. This is achieved by using a well defined external current source instead of the traditional voltage source to reset the APS architectures during the reset cycle of their periodic operation. The performance of these circuits is analyzed in terms of their stability, settling time, noise, and temperature-dependence. For appropriate readout of the current mode APS architectures, high gain transresistance amplifiers with correlated double sampling capability is designed, simulated and fabricated in CMOS technology. Measurement and measurement based calculation results reveal that the proposed APS architectures can meet even the stringent requirements of low noise, real-time digital fluoroscopy.
|
10 |
Current Programmed Active Pixel Sensors for Large Area Diagnostic X-ray ImagingSafavian, Nader 28 August 2009 (has links)
Rapid progress over the last decade on large area thin film transistor (TFT) arrays led to the emergence of high-performance, low-power, low-cost active matrix flat panel imagers. Despite the shortcomings associated with the instability and low mobility of TFTs, the amorphous silicon TFT technology still remains the primary solution for the backplane of flat panel imagers. The use of a-Si:H TFTs as the building block of the large area integrated circuit becomes challenging particularly when the role of the TFT is extended from traditional switching applications to on-pixel signal amplifier for large area digital imaging. This is the idea behind active pixel sensor (APS) architectures in which under each pixel an amplifier circuit consisting of one or two switching TFTs integrated with one amplifying TFT is fabricated. To take advantage of the full potential of these amplifiers, it is crucial to develop APS architectures to compensate for the limitations of the TFTs.
In this thesis several APS architectures are designed, simulated, fabricated, and tested addressing these challenges using the mask sets presented in Appendix A. The proposed APS architectures can compensate for inherent stabilities of the comprising TFTs. Therefore, the sensitivity of their output data to the transistor variations is significantly suppressed. This is achieved by using a well defined external current source instead of the traditional voltage source to reset the APS architectures during the reset cycle of their periodic operation. The performance of these circuits is analyzed in terms of their stability, settling time, noise, and temperature-dependence. For appropriate readout of the current mode APS architectures, high gain transresistance amplifiers with correlated double sampling capability is designed, simulated and fabricated in CMOS technology. Measurement and measurement based calculation results reveal that the proposed APS architectures can meet even the stringent requirements of low noise, real-time digital fluoroscopy.
|
Page generated in 0.083 seconds