• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 20
  • 18
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 41
  • 34
  • 32
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Antitumor Activities of Seventeen Alkylating Agents Against Human Mammary Carcinoma (MX-1) in Nude Mice

OGAWA, MAKOTO, FUJIMOTO, SHUICHI, INOUE, KATSUHIRO 03 1900 (has links)
No description available.
32

Imaging Biomarkers of Response to Radiation and Anti-angiogenic Agents in Brain Tumors

Chung, Caroline 30 May 2011 (has links)
There is mounting evidence to support combined therapy with radiation (RT) and antiangiogenic agents (AA) for the treatment of brain tumors. However, the therapeutic benefit of this combined treatment hinges on the specific dose, schedule, and duration of each treatment. Early biomarkers that reflect tumor physiological responses provide key information that could guide these aspects of treatment. Pre-clinical tumor models are invaluable tools for identifying potential biomarkers, their optimal timing for measurement and their ability to guide therapy in clinical translation. This thesis demonstrates the feasibility and potential of serial MRI to guide the design, delivery and measure of early response to combined AA and RT in a murine intracranial glioma model. We identified promising biomarker changes reflecting early treatment response that may ultimately facilitate individualized spatio-temporal delivery of radiotherapy (RT) and anti-angiogenic agents (AA) for brain tumors.
33

Imaging Biomarkers of Response to Radiation and Anti-angiogenic Agents in Brain Tumors

Chung, Caroline 30 May 2011 (has links)
There is mounting evidence to support combined therapy with radiation (RT) and antiangiogenic agents (AA) for the treatment of brain tumors. However, the therapeutic benefit of this combined treatment hinges on the specific dose, schedule, and duration of each treatment. Early biomarkers that reflect tumor physiological responses provide key information that could guide these aspects of treatment. Pre-clinical tumor models are invaluable tools for identifying potential biomarkers, their optimal timing for measurement and their ability to guide therapy in clinical translation. This thesis demonstrates the feasibility and potential of serial MRI to guide the design, delivery and measure of early response to combined AA and RT in a murine intracranial glioma model. We identified promising biomarker changes reflecting early treatment response that may ultimately facilitate individualized spatio-temporal delivery of radiotherapy (RT) and anti-angiogenic agents (AA) for brain tumors.
34

A Novel Device for Cell-Cell Electrofusion

Stewart, Justin T. 01 January 2011 (has links)
Cell transplantation therapy is a potentially powerful tool and can be used to replace defective cells with healthy cells. This offers the possibility of alleviating the destructive symptoms for many diseases such as Parkinson's disease, Alzheimer's disease, stroke, spinal cord trauma, Type I diabetes and many more. While there are many diseases that could be positively impacted from cell transplantation therapy, the focus of this research is insulin dependent, Type I Diabetes. The Islets of Langerhans are composed of various types of cells located in the pancreas and are responsible for a variety of biochemical functions. Specifically, the beta Islet cells are responsible for production of the hormone insulin that regulates and aids in biosynthesis of glucose. Transplantation of isolated allografted pancreatic islets, which contain insulin producing cells, into diabetic rats has proven to be highly successful. However, these transplantations involve using medications for long term immunosuppression to defend against an undesired host immune response. Immunosuppressive medications are both costly and illicit additional side effects that can be detrimental to the host. This research focuses on the use of testicular derived Sertoli cells that have been publicized to provide localized immunoprotection. Electrofusion is a process that can be used to fuse homogeneous and heterogeneous cell types by promoting the creation of micropores in the cell's lipid bilayer. This renders the cell temporarily fusogenic, or capable of facilitating fusion. Cells must then be brought into contact with one another via mechanical, chemical or viral means. This research study proposes to optimize electrofusion technology to create novel, secretory hybrids composed of Islet and Sertoli cells that are immunoprotected and produce insulin in response to a glucose challenge. The components of the electrofusion device include a Sterlitech 0.2 ìm microporous membrane, a woven cellulose absorbent pad, two aluminum electrodes and a chamber body and top injection molded using Delrin. Preliminary experiments using B16-F10 murine melanoma cells incorporated with centrifugation to increase cell to cell contact resulted in an average fusion yield of 18.9% ± 8.1 SD using a field strength of 2500 V/cm, 8 pulses and a 250 ìs pulse length. Additionally, lab synthesized electroporation buffers containing 8.5% sucrose (w/v) and 0.3% glucose increased total and viable fusion yields to 37.1% ± 9.3 SD and 13.8% ± 2.1 SD, respectively. These results showed promise and should be further validated with additional cell lines and tissues to corroborate reproducibility.
35

Pulsed magneto-motive ultrasound imaging

Mehrmohammadi, Mohammad 18 November 2013 (has links)
Nano-sized particles are widely regarded as a tool to study biological events at cellular and molecular levels. However, there are only a few imaging modalities that can visualize interactions between nanoparticles and living cells. A new technique -- pulsed magneto-motive ultrasound imaging, capable of in-vivo imaging of magnetic nanoparticles at improved depth and in real-time is introduced in this study. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce motion within magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. A laboratory prototype of a pulsed magneto- motive ultrasound imaging system was built, tested and optimized through modeling and experimental studies using tissue-mimicking phantoms, ex-vivo tissue samples and in- vivo mouse tumor model. The results demonstrated a sufficient contrast between normal and iron-laden tissue labeled with ultra-small magnetic nanoparticles. Finally, further modifications and research directions are discussed which can eventually lead to development of a clinically applicable pulsed magneto-motive ultrasound imaging system. / text
36

The influence of p21WAF1 on cell death pathways in acute lymphoblastic leukaemia

Davies, Carwyn, Children's Cancer Institute Australia for Medical Research, UNSW January 2009 (has links)
The p53 protein is a primary mediator of apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has categorised a wild type p53 gene in the majority of childhood acute lymphoblastic leukaemia (ALL) cases, in which instance the p53 protein functions as a modulator of chemotherapy-induced cell death. In contrast, certain p53-induced proteins, such as p21WAF1, can act in an anti-apoptotic manner, and bestow resistance to chemotherapy. Previous studies of the p53 pathway in ALL have utilised cell lines and primary material. In this study a model of ALL was utilised that had previously been developed from a heterogeneous panel of patient biopsies established as xenografts in immune-deficient mice, and are adaptable for short term in vitro culture. A wild-type p53 protein response to etoposide and nutlin-3 exposure was a feature of the whole ALL xenograft panel, irrespective of clinical characteristics and disease biology. While a range of p53 target genes were induced in B-cell precursor (BCP)-ALL and T-ALL xenografts after etoposide exposure, there was negligible induction of p21WAF1 in T- ALL samples. Further work with the histone deacetylase inhibitor vorinostat facilitated p53-independent induction of p21WAF1 in BCP-ALL samples, yet failed to induce p21WAF1 in T- ALL. An association was observed between reduced p21WAF1 expression in the T-ALL samples and decreased histone H3 acetylation in the p21WAF1 promoter together with increased cytosine methylation in the first exon/intron of the p21WAF1 gene. These results suggest that p21WAF1 in T-ALL cells is subject to epigenetic modifications that cause transcriptional silencing. Defective induction of p21WAF1 in T-ALL xenografts was associated with increased sensitivity to the death-inducing effects of drugs, phosphatidylserine (PS) externalisation and caspase-3/-7 activity after drug exposure, indicating that p21WAF1 may exert an anti-apoptotic activity. As proof of principle, p21WAF1 was silenced in Nalm-6 cells by micro-RNA transduction and these cells exhibited increased sensitivity and rapid PS externalisation after drug exposure. A combination of a p21WAF1 inhibitory agent and vorinostat gave some pharmacological evidence to suggest that p21WAF1 inhibition could enhance drug efficacy. Overall, these investigations provide insight into the epigenetic regulation of p21WAF1 and demonstrate an anti-apoptotic role for p21WAF1 in childhood ALL cells.
37

The influence of p21WAF1 on cell death pathways in acute lymphoblastic leukaemia

Davies, Carwyn, Children's Cancer Institute Australia for Medical Research, UNSW January 2009 (has links)
The p53 protein is a primary mediator of apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has categorised a wild type p53 gene in the majority of childhood acute lymphoblastic leukaemia (ALL) cases, in which instance the p53 protein functions as a modulator of chemotherapy-induced cell death. In contrast, certain p53-induced proteins, such as p21WAF1, can act in an anti-apoptotic manner, and bestow resistance to chemotherapy. Previous studies of the p53 pathway in ALL have utilised cell lines and primary material. In this study a model of ALL was utilised that had previously been developed from a heterogeneous panel of patient biopsies established as xenografts in immune-deficient mice, and are adaptable for short term in vitro culture. A wild-type p53 protein response to etoposide and nutlin-3 exposure was a feature of the whole ALL xenograft panel, irrespective of clinical characteristics and disease biology. While a range of p53 target genes were induced in B-cell precursor (BCP)-ALL and T-ALL xenografts after etoposide exposure, there was negligible induction of p21WAF1 in T- ALL samples. Further work with the histone deacetylase inhibitor vorinostat facilitated p53-independent induction of p21WAF1 in BCP-ALL samples, yet failed to induce p21WAF1 in T- ALL. An association was observed between reduced p21WAF1 expression in the T-ALL samples and decreased histone H3 acetylation in the p21WAF1 promoter together with increased cytosine methylation in the first exon/intron of the p21WAF1 gene. These results suggest that p21WAF1 in T-ALL cells is subject to epigenetic modifications that cause transcriptional silencing. Defective induction of p21WAF1 in T-ALL xenografts was associated with increased sensitivity to the death-inducing effects of drugs, phosphatidylserine (PS) externalisation and caspase-3/-7 activity after drug exposure, indicating that p21WAF1 may exert an anti-apoptotic activity. As proof of principle, p21WAF1 was silenced in Nalm-6 cells by micro-RNA transduction and these cells exhibited increased sensitivity and rapid PS externalisation after drug exposure. A combination of a p21WAF1 inhibitory agent and vorinostat gave some pharmacological evidence to suggest that p21WAF1 inhibition could enhance drug efficacy. Overall, these investigations provide insight into the epigenetic regulation of p21WAF1 and demonstrate an anti-apoptotic role for p21WAF1 in childhood ALL cells.
38

IGPR-1 promotes colorectal cancer tumor cell survival and modifies the response of cancer cells to chemotherapeutics

Pearson, Brad 18 June 2016 (has links)
Colorectal cancer (CRC) is the third leading cause of cancer-related death in women and fourth in men globally. While expansions in preventative measures have increased the detection of CRC at the early stages of disease, only 40% of CRC patients are diagnosed when the disease is at a local stage. Moreover, many anti-cancer drugs fail to significantly improve the life expectancy of patients due to innate and acquired resistance, underscoring a need for better diagnostic and therapeutic strategies for CRC. Immunoglobulin-containing and proline-rich receptor-1 (IGPR-1) is a novel cell adhesion molecule (CAM) that was recently identified in our laboratory. IGPR-1 is expressed in epithelial and endothelial cells and promotes cell-cell adhesion. Expression of IGPR-1 in endothelial cells regulates angiogenesis; however, its role in epithelial cells, particularly cancer cells with an epithelial origin, remains unknown. The overall goal of this study was to investigate the possible function of IGPR-1 in CRC tumor cell growth and response to chemotherapeutic agents. Specifically, we aimed to test the hypothesis that increased expression of IGPR-1 in CRC tumor cells promotes cell survival and contributes to the resistance of tumor cells to doxorubicin. Human CRC tumor cell lines, HCT116 and HT29, were transduced via a retroviral system to express IGPR-1 or empty retroviral vector pQCXIP. The effect of overexpression of IGPR-1 in HCT116 and HT29 cells was measured by MTT assay in non-adherent 24-well plates. In addition, cells were viewed under a light microscope, and images were taken to assess multicellular aggregation. Results demonstrated that expression of IGPR-1 in HCT116 and HT29 tumor cells promoted CRC tumor cell growth, increased multicellular aggregation, and stimulated resistance to the conventional chemotherapeutic agent doxorubicin in non-adherent cell culture conditions in vitro. Intriguingly, treatment of cells with doxorubicin promoted phosphorylation of IGPR-1 at serine 220 (Ser220), suggesting a critical role for phosphorylation of IGPR-1 in the development of resistance to chemotherapeutics. In addition, non-adherent cell culture conditions promoted activation of the key pro-apoptotic kinase, p38 MAPK in CRC tumor cells. Ectopic expression of IGPR-1 reversed this activation. This data suggests that IGPR-1, by suppressing p38 activity, in part, promotes tumor cell survival and increases the resistance of tumor cells to the killing effects of doxorubicin. Our findings are the first to demonstrate that IGPR-1 promotes CRC tumor cell growth and increases the resistance of CRC tumor cells to the cytotoxic effects of chemotherapeutic agents. The data suggests that IGPR-1 plays an important role in CRC by inhibiting the cellular apoptotic response and promoting chemotherapeutic resistance. Finally, IGPR-1 phosphorylation at Ser220 in response to doxorubicin may account for the IGPR-1-mediated development of resistance to doxorubicin in CRC.
39

Estudo dos receptores de retinol e do processo de EMT em carcinoma espinocelular de cabeça e pescoço : modelo PDX em camundongos Balb/c nude

Jesus, Luciano Henrique de January 2017 (has links)
Introdução: O carcinoma espinocelular (CEC) representa 7% de todos os novos casos de câncer no mundo, sendo o carcinoma espinocelular o tipo mais frequente. Tanto o comportamento biológico quanto o crescimento dos tumores devem ser melhores entendidos, uma vez que a sobrevida dos pacientes apresentou discreta melhora nas últimas décadas. Os modelos PDX foram desenvolvidos para estudar a biologia tumoral e principalmente os mecanismos de crescimento e proliferação através da manutenção da arquitetura e microambiente tumoral do tumor original. Os retinóides possuem a capacidade de restaurar o crescimento e a diferenciação de células normais através da ação dos receptores retinóides nucleares (RARs e RXRs) que são os principais mediadores destas ações que ao sofrerem alterações na sua expressão podem levar ao desenvolvimento e manutenção de tumores. No estudo da carcinogênese o modelo PDX é uma importante ferramenta pois mantém a arquitetura e microambiente do tumor original melhorando a compreensão de algumas vias, entre estas o processo de EMT/MET, na diferenciação das células tronco tumorais e quais receptores nucleares podem estar influenciando nestas vias. Objetivos: Analisar os padrões de comportamento biológico - tempo de formação e expansão do tumor e a manutenção dos padrões histológicos e de arquitetura do tumor original - em F0 e F1 no modelo PDX (xenoenxerto derivado de paciente) das amostras de centro de tumor e epitélio adjacente em camundongos Balb C/nude e avaliar a expressão gênica dos receptores retinóides, ALDH1 e marcadores do processo de EMT/MET por RT-PCR em PDX de carcinoma espinocelular oral em comparação com a amostra dos pacientes doadores nas passagens F(0) e F(1). Método: 24 camundongos Balb C/Nude, divididos em 2 grupos TG(I) – tumor graft paciente (I) e TG(II) – tumor graft paciente (II), subdivididos em 4 grupos de 3 animais: (A) – receberam PDX do centro do tumor; (B) – receberam PDX de epitélio adjacente ao tumor (margem de segurança cirúrgica); (C) receberam PDX de um animal do grupo (A); (D) receberam PDX de um animal do grupo (B). E Após estas fases, as amostras coletadas serão avaliadas por RT-PCR para comparação das expressões gênicas entre a amostra original (CT e EA) com os PDX´s nas passagens F(0) e F(1). Resultados: formação de tumores em todos os grupos – tanto do PDX de fragmento de centro do tumor quanto do PDX do epitélio adjacente. E A expressão gênica dos parâmetros observados não diferem no tumor original e passagem F(0) significativamente diferentes em F(1) (p<0,05). Conclusões: A técnida do PDX para o CEC é possível de ser realizada em menor tempo com a implantação de apenas um fragmento do tumor. Os tumores resultantes do PDX apresentaram tamanho suficiente para novas passagens, bem como para seu 6 uso em estudos de comportamento biológico das células neoplásicas. Quanto ao epitélio adjacente ao tumor (margem de segurança cirúrgica) constatou-se a presença de células tumorais com potencial de promover o crescimento de tumores devendo portanto ser melhor observada nas ressecções. O PDX de primeira passagem F(0) é o que mais se assemelha com o tumor original sendo o melhor para testes terapêuticos e estudos da carcinogênese do CEC oral. Keywords: CECP, modelo PDX, xenoenxerto, margem de segurança cirúrgica, , receptores retinóides, microdissecção a laser. / Introduction: Squamous cell carcinoma (SCC) represents 7% of all new cases of cancer in the world, with squamous cell carcinoma being the most frequent type. Both the biological behavior and the growth of the patients should be better understood, since the patients' survival show unobtrusive improvement in the last decades. PDX models were developed to study a tumor biology and especially the mechanisms of growth and proliferation through maintenance of the architecture and tumor microenvironment of the original tumor. Retinoids have a capacity to restore normal cell growth and differentiation through the action of nuclear retinoid receptors (RARs and RXRs) that are the main mediators and maintenance actions of tumors. In the study of carcinogenesis, the PDX model is an important tool because it maintains an architecture and microenvironment of the original tumor, improving an understanding of some pathways, among them in the EMT / MET process, the difference in tumor stem cells and which nuclear receptors may be influencing these routes. Objectives: To analyze changes in methodology and patterns of biological behavior - time of tumor formation and expansion and maintenance of histological and architectural patterns of the original tumor - in F0 and F1 without PDX model (patient derived xenograft) tumor and adjacent epithelium in Balb C / nude mice and to evaluate the gene expression of retinoid receptors, ALDH1 and EMT / MET process markers by RT-PCR in PDX of oral squamous cell carcinoma compared to a sample of donor patients in F ( 0) and F (1). Method: 24 Balb C / Nude mice, divided into 2 groups TG (I) - patient tumor graft (I) and TG (II) - patient tumor graft (II) subdivided into 4 groups of 3 animals: (A) - received PDX from the center of the tumor; (B) - received epithelial PDX adjacent to the tumor (surgical margin of safety); (C) received PDX from one animal of group (A); (D) received PDX from one animal of group (B). E After these phases, as samples collected for RT-PCR evaluation for comparison of gene expressions between an original sample (CT and EA) with F passages of PDX F (0) and F (1). Results: tumor formation in all groups - both the PDX of the tumor center fragment and the PDX of the adjacent epithelium. E The gene expression of the observed parameters did not differ without original tumor and F (0) differential passage in F (1) (p <0.05). Conclusions: The PDX technique for CPB is possible to be performed in a shorter time with a tumor fragment implantation. Tumors resulting from PDX presented the solution for new passages, as well as for their use in studies of the biological behavior of neoplastic cells. As for the epithelium adjacent to the tumor (surgical margin of safety), a presence of tumor cells with the potential to promote the growth of tumors has been observed and should therefore be better observed in the resections. The first pass PDX F (0) is the one that most closely resembles the 8 original tumor being the best for therapeutic tests and studies of oral SCC carcinogenesis.
40

Small Molecule Inhibition of Quiescin Sulfhydryl Oxidase 1 (QSOX1), a Dynamic Pro-Tumorigenic Regulator of the Extracellular Matrix

January 2015 (has links)
abstract: Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating lymphocytes, or chronic pancreatitis). QSOX1 overexpression has been confirmed in a number of other histological tumor types, such as breast, lung, kidney, prostate, and others. Expression of QSOX1 supports a proliferative and invasive phenotype in tumor cells, and its enzymatic activity is critical for promoting an invasive phenotype. An in vivo tumor growth study utilizing the pancreatic tumor cell line MIAPaCa-2 containing a QSOX1-silencing shRNA construct revealed that QSOX1 expression supports a proliferative phenotype. These preliminary studies suggest that suppressing the enzymatic activity of QSOX1 could represent a novel therapeutic strategy to inhibit proliferation and invasion of malignant neoplasms. The goal of this research was to identify and characterize biologically active small molecule inhibitors for QSOX1. Chemical inhibition of QSOX1 enzymatic activity was hypothesized to reduce growth and invasion of tumor cells. Recombinant QSOX1 was screened against libraries of small molecules using an enzymatic activity assay to identify potential QSOX1 inhibitors. Two lead QSOX1 inhibitors were confirmed, 2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1 pyrrolidinyl)phenyl]benzamide. The biological activity of these compounds is consistent with QSOX1 knockdown in tumor cell lines, reducing growth and invasion in vitro. Treatment of tumor cells with these compounds also resulted in specific ECM defects, a phenotype associated with QSOX1 knockdown. Additionally, these compounds were shown to be active in pancreatic and renal cancer xenografts, reducing tumor growth with daily treatment. For ebselen, the molecular mechanism of inhibition was determined using a combination of biochemical and mass spectrometric techniques. The results obtained in these studies provide proof-of-principle that targeting QSOX1 enzymatic activity with chemical compounds represents a novel potential therapeutic avenue worthy of further investigation in cancer. Additionally, the utility of these small molecules as chemical probes will yield future insight into the general biology of QSOX1, including the identification of novel substrates of QSOX1. / Dissertation/Thesis / Doctoral Dissertation Molecular and Cellular Biology 2015

Page generated in 0.0492 seconds