Spelling suggestions: "subject:"least -- etabolism"" "subject:"least -- emetabolism""
1 |
Integration of general amino acid control and TOR regulatory pathways in yeastStaschke, Kirk Alan 21 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Two important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.
|
2 |
Modélisation de la bascule métabolique chez les cellules eucaryotes : application à la production de citrate chez la levure Yarrowia lipolytica / Modeling the metabolic switch in eukaryotic cells : application to citrate production in yeast Yarrowia lipolyticaDa veiga moreira, Jorgelindo 18 April 2019 (has links)
L’objectif de ce projet de thèse est d’étudier et caractériser les mécanismes impliqués dans la bascule respiro-fermentaire chez des cellules eucaryotes dotées d’un métabolisme mitochondrial. Les cellules eucaryotes ont des besoins différents en oxygène pour la production d’énergie et leur survie dans un environnement donnée. Elles sont qualifiées de type aérobie stricte lorsque la présence d’oxygène leur est nécessaire ou aéro-anaérobie facultatif dans le cas où l’oxygène n’est pas indispensable à la production d’énergie. La levure Yarrowia lipolytica a été choisie comme modèle d’étude de par sa particularité à être un micro-organisme aérobie strict avec une grande capacité d’accumuler de lipides et de production d’acides organiques. Les études expérimentales et analytiques, par l’emploi de méthodes mathématiques de modélisation du métabolisme, ont permis d’identifier des contraintes métaboliques impliquées dans la transition respiro-fermentaire chez cette levure au métabolisme énergétique oxydatif. La production de l’acide citrique par Y. lipolytica, déjà rapportée dans la littérature, a été choisi comme un marqueur de cette transition respiro-fermentaire. Nous avons découvert que l’inhibition de la protéine oxydase alternative (AOX), impliquée dans la respiration mitochondriale, par la molécule n-propyl gallate (nPG) permet d’améliorer le rendement de production d’acide citrique par fermentation du glucose dans une culture de Y. lipolytica. Ces résultats montrent que la nPG, déjà utilisée dans l’industrie agro-alimentaire et pharmaceutique en tant que conservateur joue sur la bascule respiro-fermentaire par inhibition de la consommation d’oxygène et stimule ainsi la production d’acide citrique. La modélisation du réseau métabolique de Y. lipolytica, décrit à l’échelle du genome, par dynamic Flux Balance Analysis (dFBA) a permis d’identifier l’accumulation des espèces oxydantes dites ROS (Reactive Oxygen Species) comme un levier majeur de la bascule respiro-fermentaire et donc de la production d’acide citrique chez la levure Y. lipolytica. De plus, nos résultats préliminaires montrent que l’oxydation des lipides accumulés par Y. lipolytica pourrait être à l’origine de la génération des ROS. Cette étude doit être approfondie expérimentalement et constitue un apport important pour l’industrie agro-alimentaire et pharmaceutique.Mots clés : Bascule respiro-fermentaire, Acide citrique, lipides, Yarrowia lipolytica, n-propyl gallate, Reactive Oxygen Species, modélisation, dynamic Flux Balance Analysis / The main goal of this thesis project is to study and characterize mechanisms involved in respiratory to fermentative shift in eukaryotic cells endowed with mitochondrial metabolism. Eukaryotic cells have different oxygen requirements for energy production and survival in a given environment. They are described as strict aerobic when the presence of oxygen is necessary or optional aero-anaerobic in when oxygen is not essential for energy production. The yeast Yarrowia lipolytica was chosen as our study model thanks to its particularity since it is a strict aerobic microorganism with a high capacity to accumulate lipids and to produce organic acids. Experimental and analytical studies, using mathematical methods for modeling cell metabolism, allowed us to identify metabolic constraints involved in respiratory to fermentative transition in this yeast showing oxidative energy metabolism. Production of citric acid by Y. lipolytica, already reported in the literature, has been chosen as a marker for this in respiratory to fermentative shift. We found that the inhibition of the alternative oxidase protein (AOX) involved in mitochondrial respiration, by adding n-Propyl gallate (nPG) molecule improves the yield of citric acid production by fermentation of glucose in a Y. lipolytica culture. These results show that nPG, already used in food and pharmaceutical industry as a preservative, plays on respiratory to fermentative balance by inhibition of oxygen consumption and thus stimulates the production of citric acid. Modeling of the metabolic network of Y. lipolytica, described at genome-scale, by dynamic Flux Balance Analysis (FBA) has identified the accumulation of intracellular ROS (Reactive Oxygen Species) species as major levers for respiratory to fermentative shift and therefore the production of citric acid by Y. lipolytica. Therefore, our preliminary results show that oxidation of lipids accumulated by Y. lipolytica could be involved in generation of ROS species. This study must be experimentally deepened and constitutes an important contribution for the agri-food and pharmaceutical industry.Key words: Respiratory to fermentative shift, Citric acid, lipids, Yarrowia lipolytica, n-Propyl gallate, Reactive Oxygen Species, modeling, dynamic Flux Balance Analysis
|
3 |
Evaluation of evolutionary engineering strategies for the generation of novel wine yeast strains with improved metabolic characteristicsHorsch, Heidi K. 12 1900 (has links)
Thesis (PhD (Viticulture and Oenology. Wine Biotechnology))--Stellenbosch University, 2008. / The occurrence of sluggish and stuck fermentations continues to be a serious problem
in the global wine industry, leading to loss of product, low quality wines, cellar
management problems and consequently to significant financial losses. Comprehensive
research has shown that many different factors can act either in isolation, or more
commonly synergistically, to negatively affect fermentative activity of wine yeast strains
of the species Saccharomyces cerevisiae. The individual factors most commonly
referred to in the literature are various nutrient and oxygen limitations. However, other
factors have been shown to contribute to the problem. Because of the mostly synergistic
nature of the impacts, no single factor can usually be identified as the primary cause of
stuck fermentation.
In this study, several strategies to evolutionarily engineer wine yeast strains that are
expected to reduce the occurrence of stuck and sluggish fermentations are investigated.
In particular, the investigations focus on improving the ability of wine yeast to better
respond to two of the factors that commonly contribute to the occurrence of such
fermentations, nitrogen limitation and the development of an unfavorable ratio of
glucose and fructose during fermentation.
The evolutionary engineering strategies relied on mass-mating or mutagenesis of
successful commercial wine yeast strains to generate yeast populations of diverse
genetic backgrounds. These culture populations were then exposed to enrichment
procedures either in continuous or sequential batch cultivation conditions while applying
specific evolutionary selection pressures.
In one of the stragegies, yeast populations were subjected to continuous cultivation
under hexose, and especially fructose, limitation. The data show that the strains
selected after this procedure were usually able to out-compete the parental strains in
these selective conditions. However, the improved phenotype was not detectable when
strains were evaluated in laboratory scale wine fermentations.
In contrast, the selection procedure in continuous cultivation in nitrogen limiting
conditions proved to be highly efficient for the generation of yeast strains with higher
total fermentative capacity in low nitrogen musts.
Furthermore, yeast strains selected after mutagenesis and sequential batch cultivation
in synthetic musts with a very low glucose on fructose ratio showed a fructose specific
improvement in fermentative capacity. This phenotype, which corresponds to the
desired outcome, was also present in laboratory scale wine fermentations, where the
discrepancy between glucose and fructose utilization of the selected strains was
significantly reduced when compared to the parents.
Finally, a novel strategy for the rectification of stuck fermentations was adjusted to
industrial conditions. The strategy is based on the use of a natural isolate of the yeast
species Zygosaccharomyces bailii, which is known for its preference of fructose. This
process was successfully established and implemented in the wine industry.
|
4 |
Sledování vlastností kvasinek v průběhu kvašení piva / Investigation of yeast properties during the beer fermentationKociánová, Lenka January 2008 (has links)
In this diploma thesis, the properities of brewery’s yeasts during the operation beer fermentation in the selected brewery and dependences of diferent agents and their influence on viability and vitality of the yeasts were studied. Other observed properities were physiological state, pH, temperature, a value of soft and coarse sludges, a value of dissolved oxygen in wort, the level of wort’s fermentation. It were collected the samples of fermenting wort and washing yeasts for determination. The used yeasts were observed from the first time until thein last used (generally 4 times). pH, temperature, apparent fermenting and total numer of yeast cells were measured in the collected samples. The used yeasts were washed before every other application and vitality was determined. The number of death cells were observed by this method. The number of death cells never fell bellow 5 %. The value of dissolved oxygen in wort is also the important agent for the growth of yeasts. The touchs with low number of oxygen showed that the time for fermentation had to be longer (by about 3 or 4 days more). The touchs with higher number of sludges showed that the sludges haven’t any influence on the yeasts and the procces of fermentation. Confirm the accuracy of the repeated used of the yeasts was the object of this thesis.
|
Page generated in 0.059 seconds