• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variation in lentil (Lens culinaris Medik) in response to irrigation

Hamdi, Ahmed Hamdi Ismail Hamdi Ahmed January 1987 (has links)
This study aimed to investigate the response of lentil genotypes to different water regimes, providing guide lines, through partitioning the variation, for a selection program for adaptation to irrigated conditions. The research was divided into two main areas; 1) The overall variation in the crop was partitioned into genotypic, environmental and genotype-environmental components in an analysis of adaptation over seasons, irrigation regimes and locations; 2) The genotypic variation was partitioned into its various genetic components in an inheritance study using the dial lei mating system. Pronounced progress should be expected from selection for number of pods/plant, 100 seed weight and straw yield/plant traits, which showed high estimates of h(^2)(_b.s), C.G.V. and G.S. The two former traits correlated strongly and positively with seed yield, which allowed their use in indirect selection for seed yield. The 35 genotypes used in this study showed wide genetic diversity, allowing selection of high yielding genotypes under irrigation. Environmental variation in water supply, temperature and soil type was found to exert a profound effect on variation in characters measured. This suggests the possibility of raising yield levels through improved management practices. In this study, irrigation repeated twice increased seed yield by 19% over no irrigation, at the same location, and increased the yield by 300% in comparison with a dry location. Seed protein quality was influenced by environments and genotypes. Electrophoretic studies showed that the number and position of the bands could be used to identify genotypes. Four genotypes showed response to irrigation and could be recommended as promising entries. An anatomical study showed that large air spaces formed in the roots of a responsive genotype:, which could be used as a selection criterion for positive response to irrigation. Seed yield/plant exhibited 31.8% heterosis and showed a predominant role of non-additive genetic variance. Due to the significance of the non-additive effect, the superior F(_1)'s may be expected to throw out desirable transgressive segregants, provided that the complementary genes and epistatic effects included in the non-additive component are coupled in the same direction to maximize seed yield. Five F(_2) crosses showed superiority in seed yield and SCA effects. These crosses should be carried forward in lentil breeding programs.
2

Response to population in corn hybrids with specific characteristics

Schroeder, Nathan January 1900 (has links)
Master of Agribusiness / Department of Agricultural Economics / Allen M. Featherstone / Examining the interaction between population and corn yield is important because the challenge of feeding the world is real. Projections show the world population is increasing and expected to reach over 9 billion people by around 2050. Expanding global urbanization drives the need to increase corn yield on current land and needs to occur to meet global population growth. Previous studies on corn yield increases conclude that ear size is limited and increasing corn plants per acre is important to increasing yield potential. This study used Answerplot data to analyze the effect of increasing plant population on corn yield in 2009. There are over 150 Answerplots across the cornbelt. The weather of 2009 proved to be a challenging year in certain regions of the cornbelt. Record rainfall, and below normal temperature had an influence on corn yield. A total of 4,180 observations from Answerplot were used from across the nation to analyze the relationship between corn yield and plant population. Multiple regression models were estimated and found that in 2009, an increase in plant population from 30,000 to 40,000 plants per acre resulted in an 8.5 bushel per acre increase. This result was robust for various econometric models. Economically, the cost per acre for current seed for this increase in population is about $38.87 per acre. At a corn price greater than $4.58 per bushel, increasing plant population would have made economic sense for 2009.
3

Kansas grain supply response to economic and biophysical changes

Boussios, David January 1900 (has links)
Master of Science / Department of Agricultural Economics / Andrew Barkley / This research identifies and quantifies the impact of biophysical and economic variables on Kansas crop acreage and yields for the period 1977- 2007. Due to long production time requirements, agricultural producers must make vital decisions with imperfect information, based on expectations of future agronomic and economic conditions. This research analyzes the impact of price, climate, and yield expectations on crop acreage allocations and yield responses for the four major commodities produced in Kansas: corn, soybeans, wheat, and grain sorghum (milo). By modeling and analyzing both biophysical and economic variables, total supply response can be estimated for potential future changes in prices, yields, climate, and weather outcomes. The analysis of both biophysical and economic conditions allows for the estimation of supply response in the short and long run. The results provide updated, more precise results than previous research, which has often separated acreage and yield response.
4

Economics of nitrogen fertilization: Site-specific application, risk implications, and greenhouse gas emissions

Karatay, Yusuf Nadi 18 February 2020 (has links)
In Anbetracht des Kompromisses zwischen der Erzielung des höchsten Gewinns und der geringsten Umweltbelastung ist ein tiefes Verständnis der ökonomischen Folgen der Stickstoff (N) Düngung erforderlich. Die vorliegende Doktorarbeit liefert umfassende Einblicke in (i) die Auswirkungen des standortspezifischen N-Managements (SSNM) auf die Rentabilität und Risikominderung, (ii) die Auswirkungen von Unsicherheiten und Risikoeinflüssen auf optimale N-Düngergaben und (iii) das Potenzial und die Kosten der Vermeidung von Treibhausgas (THG) Emissionen durch N-Düngereduktion. Ein Modellierungsansatz wurde entwickelt, um die Wirkung von Ertrag und Proteingehalt, Wirtschafts- und Risikoauswirkungen sowie THG-Emissionen auf die N-Düngung zu simulieren. Die Ergebnisse der Arbeit zeigen, dass SSNM die Wirtschaftlichkeit verbessert, indem es eine höhere Weizenqualität und damit Preisprämien erzielt. SSNM reduziert das Risiko, die Backqualität nicht zu erreichen, und es gibt keine wesentlichen Nachteile beim Verlustrisikomanagement im Vergleich zum einheitlichen Management. Preisprämien für eine höhere Weizenqualität bieten Anreize für höhere N-Düngergaben. Prämien verflachen die Gewinnfunktion weiter, was unzureichende Argumente für eine Absenkung des N-Inputs aus der Wirtschaftlichkeitssicht liefert, selbst bei einer hohen Risikoaversion der Landwirte. Eine moderate Reduzierung der mineralischen N-Düngung kann die THG-Emissionen bei moderaten Opportunitätskosten mindern. Die THG-Vermeidung durch N-Düngereduktion in einer bestimmten Region kann unter Berücksichtigung kultur- und ertragszonenspezifischer Ertragswirkungen optimiert werden. Insgesamt liefert diese Arbeit wichtige Erkenntnisse über die Chancen und Nachteile der Anpassung der N-Düngergaben. Darüber hinaus leistet sie einen direkten Beitrag zur Identifizierung von kosten- und risikoeffizienten N-Managementoptionen und bildet die Grundlage für effektive politische Ansätze zur THG-Vermeidung durch selektive N-Düngereduktion. / Considering the tradeoff between achieving the highest profit and causing the lowest environmental impact, there is a need for a profound understanding of the economic consequences of nitrogen (N) fertilizer application. The present doctoral research provides comprehensive insights into (i) effects of site-specific N management (SSNM) on profitability and risk mitigation; (ii) impacts of uncertainties and risk implications on optimal N fertilizer rates; and (iii) potential and costs of mitigating greenhouse gas (GHG) emissions by N fertilizer reduction. A modelling approach was developed to simulate the response of yield, protein, economic and risk implications, and GHG emissions to N fertilizer application. Findings of the thesis show that SSNM improves profitability by achieving higher grain quality, thus, price premiums. SSNM reduces the risk of not reaching the baking grain quality and poses no considerable disadvantage on downside risk management compared to uniform management. Price premiums for higher wheat quality provide incentives for higher N input rates. Premiums further flatten the profit function, giving insufficient arguments for lowering N input from a farm profitability perspective, even in presence of high risk aversion of farmers. Moderate reduction of mineral N fertilizer can mitigate GHG emissions at moderate opportunity costs. GHG mitigation by N fertilizer reduction in a given region can be optimized considering crop and yield-zone-specific yield responses. Overall, this thesis provides important insights on chances and drawbacks of adjusting N fertilizer rates. Moreover, it makes a direct contribution in identifying cost- and risk-efficient N management options and provides a basis for effective policy approaches to reduce GHG emissions by selective N fertilizer reduction.

Page generated in 2.4074 seconds