• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 84
  • 74
  • 62
  • 41
  • 17
  • 7
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 622
  • 122
  • 104
  • 76
  • 73
  • 67
  • 63
  • 51
  • 51
  • 51
  • 51
  • 48
  • 47
  • 47
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Charge carrier dynamics of ZnO and ZnO-BaTio3 thin films

Acharya, Snigdhatanu, Chouthe, Sumedha, Sturm, Chris, Graener, Heinrich, Schmidt-Grund, Rüdiger, Grundmann, Marius, Seifert, Gerhard 26 July 2022 (has links)
Femtosecond pump-probe, spectroscopy was performed on ZnO thin film and a double layer structure of ZnO / BaTiO3. Using a model based on the dielectric function of ZnO obtained by spectral ellipsometry, the observed spectral features were explained. Further, the influence of the BTO layer on the charge carrier dynamis of ZnO was investigated.
412

Exciton–polaritons in a ZnO-based microcavity: polarization dependence and nonlinear occupation

Sturm, Chris, Hilmer, Helena, Schmidt-Grund, Rüdiger, Grundmann, Marius 27 July 2022 (has links)
We report on the occupation of the lower exciton–polariton branch in a ZnO-based microcavity as a function of the detuning between the exciton and the uncoupled cavity-photon mode and on the optical excitation density. We emphasize the difference in the dispersion and occupation of the lower polariton branch as a function of the linear polarization of the emitted light. For the negative detuning regime, we found an energy splitting between the transverse electric (TE)- and transverse magnetic (TM)-polarized states at inplane wave vectors between 0.4×107 m−1 and 1.2×107 m−1, which is caused by the polarization dependence of the dispersion of the uncoupled cavity-photon mode. The maximum energy splitting of about 6 meV was observed for a detuning of about 1 = −70 meV. From the integrated photoluminescence peak, we deduce the occupation of the lower polariton branch as well as the scattering rates of exciton–polaritons into the lower polariton branch. We found that the energy splitting causes an enhanced scattering of exciton–polaritons into the lower polariton branch for the TM-polarized light compared with that of the TE-polarized light. By varying the excitation density, we observe a superlinear growth of the lower polariton branch occupation for negative and intermediate detuning regimes. For an accumulation of exciton–polaritons in the ground state at low temperatures (T = 10 K), we found an intermediate detuning regime (−20 meV < 1 < +20 meV) as the optimum. With increasing temperature, this optimum detuning range shifts to larger negative values.
413

Hydrogen-mediated ferromagnetism in ZnO single crystals

Khalid, Muhammad, Esquinazi, Pablo, Spemann, Daniel, Anwand, Wolfgang, Brauer, G. 27 July 2022 (has links)
We investigated the magnetic properties of hydrogen-plasma-treated ZnO single crystals by using superconducting quantum interferometer device magnetometry. In agreement with the expected hydrogen penetration depth, we found that ferromagnetic behavior is present in the first 20 nm of the H-treated surface of ZnO with magnetization at saturation up to 6 emu g−1 at 300K and a Curie temperature of Tc & 400 K. In the ferromagnetic samples, a hydrogen concentration of a few atomic per cent in the first 20 nm of the surface layer was determined by nuclear reaction analysis. The saturation magnetization of H-treated ZnO increases with the concentration of hydrogen.
414

Fatigue, Fracture and Impact of Hybrid Carbon Fiber Reinforced Polymer Composites

Yari Boroujeni, Ayoub 25 January 2017 (has links)
The excellent in-plane strength and stiffness to-weight ratios, as well as the ease of manufacturing have made the carbon fiber reinforced polymer composites (CFRPs) suitable structural materials for variety of applications such as aerospace, automotive, civil, sporting goods, etc. Despite the outstanding performance of the CFRPs along their fibers direction (on-axis), they lack sufficient strength and performance in the out-of-plane and off-axis directions. Various chemical and mechanical methods were reported to enhance the CFRPs' out-of-plane performance. However, there are two major drawbacks for utilizing these approaches: first, most of these methods induce damage to the carbon fibers and, therefore, deteriorate the in-plane mechanical properties of the entire CFRP, and second, the methods with minimal deteriorating effects on the in-plane mechanical performance have their own limitations resulting in very confined mechanical performance improvements. These methods include integrating nano-sized reinforcements into the CFRPs' structure to form a hybrid or hierarchical CFRPs. In lieu to all the aforementioned approaches, a relatively novel method, referred to as graphitic structures by design (GSD), has been proposed. The GSD is capable of grafting carbon nanotubes (CNTs) onto the carbon fibers surfaces, providing high concentration of CNTs where they are most needed, i.e. the immediate fiber/matrix interface, and in-between the different laminae of a CFRP. This method shows promising improvements in the in-plane and out-of-plane performance of CFRPs. Zinc oxide (ZnO) nanorods are other nano-sized reinforcing structures which can hybridize the CFRPs via their radially growth on the surface of carbon fibers. Among all the reported methods for synthesizing ZnO nanorods, hydrothermal technique is the most straightforward and least destructive route to grow ZnO nanorods over carbon fibers. In this dissertation, the GSD-CNTs growth method and the hydrothermal growth of ZnO nanorods have been utilized to fabricate hybrid CFRPs. The effect of different ZnO nanorods growth morphologies, e.g. size distribution and alignment, on the in-plane tensile performance and vibration attenuation capabilities of the hybrid CFRPs are investigated via quasi-static tension and dynamical mechanical analysis (DMA) tests, respectively. As a result, the in-plane tensile strength of the hybrid CFRPs were improved by 18% for the composite based on randomly oriented ZnO nanorods over the carbon fibers. The loss tangent of the CFRPs, which indicates the damping capability, increased by 28% and 19% via radially and randomly grown ZnO nanorods, respectively. While there are several studies detailing the effects of dispersed nanofillers on the fracture toughness of FRPs, currently, there are no literature detailing the effect of surface GSD grown CNTs and ZnO nanowire -on carbon fiber- on the fracture toughness of these hybrid composites. This dissertation probes the effects of surface grown nano-sized reinforcements on the fracture toughness via double cantilever beam (DCB) tests on hybrid ZnO nanorod or CNT grafted CFRPs. Results show that the surface grown CNTs enhanced the Mode I interlaminar fracture toughness (GIc) of the CFRPs by 22% and 32%, via uniform and patterned growth morphologies, respectively, over the reference composite based on untreated carbon fiber fabrics. The dissertation also explains the basis of the improvements of the fracture toughness via finite element method (FEM). In particular, FEM was employed to simulate the interlaminar crack growth behavior of the hybrid CFRPs under Mode I crack opening loading conditions embodied by the DCB tests. These simulations revealed that the hybrid CFRP based on fibers with uniform surface grown MWCNTs exhibited 55% higher interlaminar strength compared to the reference CFRPs. Moreover, via patterned growth of MWCNTs, the ultimate crack opening resistance of the CFRPs improved by 20%. To mimic the experimental behavior of the various CFRPs, a new methodology has been utilized to accurately simulate the unstable crack growth nature of CFRPs. Several investigations reported the effects of adding nanomaterials-including CNTs- as a filler phase inside the matrix material, on the impact energy absorption of the hybrid FRPs. However, the impact mitigation performance of CFRPs based on ZnO nanorod grafted carbon fibers has not been reported. The dynamic out-of-plane energy dissipation capabilities of different hybrid composites were investigated utilizing high velocity (~90 m/s) impact tests. Comparing the results of the hybrid MWCNT/ZnO nanorod/CFRP with those of reference CFRP, 21% and 4% improvements were observed in impact energy absorption and tensile strain to failure of the CFRPs, respectively. In addition to elevated stiffness and strength, CFRPs should possess enough tolerance not only to monotonic loadings, but also to cyclic loadings to be qualified as alternatives to traditional structural metal alloys. Therefore, the fatigue life of CFRPs is of much interest. Despite the promising potential of incorporating nano-sized reinforcements into the CFRPs structure, not many studies reported on the fatigue behavior of hybrid CFRPs so far. In particular, there are no reported investigations to the effect of surface grown CNTs on the fatigue behavior of the hybrid CFRPs, due to fact that almost all the CNT growth techniques (except for the GSD method) deteriorated the in-plane performance of the hybrid CFRPs. The hybrid ZnO nanorod grafted CFRPs have not been investigated under fatigue loading as well. In this dissertation, different hybrid CFRPs were tested under tension-tension fatigue to reveal the effects of the different nano-reinforcements growth on the fatigue behavior of the CFRPs. A remarkable fatigue damage tolerance was observed for the CFRPs based on uniform and patterned grown CNT fibers. Almost two decades of fatigue life extension was achieved for CFRPs based on surface grown MWCNTs. / Ph. D.
415

Sub-micron Patterning of ZnO-PMMA Hybrid Films

Gervasio, Michelle Rose 24 January 2019 (has links)
Sub-micron patterning is fundamental to the fabrication of numerous devices Traditional commercial manufacturing methods either lack the resolution needed to attain the appropriate size or are prohibitively expensive due to low throughput or the necessity of expensive equipment. Imprint lithography is a rapid, inexpensive alternative to making sub-micron features that can be tailored to work with a variety of materials. Imprint lithography, while traditionally used with pure polymers has been tailored to be used with nanoparticle-polymer hybrid films. This work has achieved high-fidelity pattern transfer onto polymer-nanoparticle hybrid films with feature sizes as small as 250 nm. The polymer-nanoparticle hybrid was fabricated by creating a liquid suspension of functionalized ZnO nanoparticles and poly(methyl methacrylate) (PMMA) in a solvent. The ZnO particles were functionalized by adding nonanoic acid in order to facilitate the dispersion of the particles in a non-polar solvent. This suspension was spread onto substrate, imprinted with a patterned stamp, allowed to dry, and was demolded. The final result was features ranging from 250 nm to 1 μm in size with good fidelity as determined by the accuracy of the feature replication and the surface roughness of the overall sample. The effect of the ZnO content as well as the method of combining the suspension components on the feature fidelity was studied. In general, it was found that feature fidelity is acceptable up to a dry-film composition of 15 vol% ZnO and that feature sizes above 500 nm were more tolerant of higher solids loading. The same imprint lithography method was also used to pattern a polymer-derived SiOC glass. The SiOC was shown to be have interesting shrinkage properties where the feature-level linear shrinkage was up to 5% more than that of the bulk. The features were shown to be stable during pyrolysis up to 1000°C and stable at operating temperatures up to 1000°C. A constant number Monte Carlo simulation was used to describe the suspension behavior to confirm the empirical results from the physical experiments. The effects of Van der Waals forces, steric stabilization, depletion flocculation, as well as the physical impediment of entangled polymer chains were considered. A similar agglomeration behavior was shown in the simulations compared to the physical experiments. This thesis shows that polymer-nanoparticle hybrid films are a compatible material for imprint lithography using appropriate suspension parameters. This is very important for a variety of applications and devices. Using imprint lithography to make these devices makes them cheaper and more accessible to the commercial market and can make a large number of theoretical devices a reality. / Ph. D. / Sub-micron patterning is an integral part of making many modern technologies such as memory storage devices or integrated circuits. As this technology becomes smaller and smaller, the limiting factor for making these devices has become the ability to manufacture effectively at the appropriate scale. Traditional commercial manufacturing methods lack the resolution needed to attain small enough features. Manufacturing methods that can make small enough features are often either extremely expensive or offer incomplete control of the feature morphology. Imprint lithography is a high-throughput, inexpensive alternative to making sub-micron features that can be tailored to work with a variety of materials. Imprint lithography is simple process in which a patterned stamp is pressed into a softened film of material in order to transfer the pattern of the stamp onto that material. Traditionally, imprint lithography works best with polymers and researchers have struggled to pattern nanoparticle-based materials. This work has achieved high-fidelity pattern transfer onto polymer-nanoparticle hybrid films with feature sizes on the same order as the polymer films found reported in literature. The polymer-nanoparticle hybrid was realized by creating a liquid suspension of functionalized ZnO nanoparticles and poly(methyl methacrylate) (PMMA) in a solvent. The ZnO particles were functionalized by adding nonanoic acid, allowing the normally polar particles to disperse in the non-polar solvent needed to dissolve the PMMA. This suspension was spread onto a glass substrate, imprinted with a patterned stamp, allowed to dry, and was demolded. The final result was the successful transfer of features ranging from 250 nm to 1 μm in size with good fidelity. The effect of the ZnO content as well as the method of combining the suspension components on the feature fidelity was studied. To help prove the broad applicability of this imprint method, it was adapted for use with polymer-derived ceramics. Additionally, a computer simulation was developed to help understand the behavior of the nanoparticle-polymer suspension during the imprint process.
416

PREPARACIÓN ELECTROQUÍMICA DE CAPAS NANOESTRUCTURADAS DE ZnO PARA APLICACIONES FOTOVOLTAICA

Moya Forero, Mónica Mercedes 01 October 2012 (has links)
En esta tesis se centra en el estudio de capas delgadas basadas en óxido de zinc (ZnO) para aplicaciones fotovoltaicas, en concreto células solares sensibilizadas con colorante (DSSC). Se optimizaron los parámetros de crecimiento de estas nanoestructuras hibridas depositadas mediante la técnica de electrodeposición catódica para posteriormente desarrollar un dispositivo eficiente para la conversión de la luz. OBJETIVOS Los objetivos principales de la tesis son: - Establecer las condiciones de crecimiento de las películas híbridas de ZnO/colorante mediante su estudio morfológico, estructural, óptico y eléctrico. - Verificar la incorporación de diferentes colorantes como Eosin-Y, Fthalociania de cobre (Ts-CuPc) y N719 en la estructura del ZnO. - Implementación de una celda DSCC basada en estas películas híbridas para la conversión de la energía mediante el cálculo de eficiencia. ELEMENTOS DE LA METODOLOGÍA La técnica de depósito utilizada para la obtención de estos materiales híbridos es la electrodeposición catódica. Para el estudio y la optimización de estas películas se utilizaron diferentes técnicas de caracterización física mediante SEM, AFM, XRD, transmitancia, fotocorriente, etc. Y finalmente, estas películas se integraron en dispositivos DSSC. RESULTADOS LOGRADOS Los resultados obtenidos fueron los siguientes: - Optimización y caracterización del crecimiento de la película delgada de ZnO. Se observo que la estructura hexagonal del ZnO es modificable y altamente dependiente de la concentración tanto de los precursores como del disolvente en la disolución. Las películas con mejores propiedades cristalinas se obtuvieron a una temperatura de depósito de 80°C y a un potencial de -0,9 V. - Optimización y caracterización del crecimiento de películas delgadas de ZnO/híbridas usando distintos colorantes: Eosin-Y, Ts-CuPc y N719. Las propiedades eléctricas y físicas se pueden modificar variando las concentraciones de los colorantes. En el caso del / Moya Forero, MM. (2012). PREPARACIÓN ELECTROQUÍMICA DE CAPAS NANOESTRUCTURADAS DE ZnO PARA APLICACIONES FOTOVOLTAICA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17322
417

Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes.

Sharma, V., Singh, Suman K., Anderson, Diana, Tobin, Desmond J., Dhawan, A. 05 1900 (has links)
No / Zinc oxide (ZnO) nanoparticles are widely used in cosmetics and sunscreens. Human epidermal keratinocytes may serve as the first portal of entry for these nanoparticles either directly through topically applied cosmetics or indirectly through any breaches in the skin integrity. Therefore, the objective of the present study was to assess the biological interactions of ZnO nanoparticles in primary human epidermal keratinocytes (HEK) as they are the most abundant cell type in the human epidermis. Cellular uptake of nanoparticles was investigated by scanning electron microscopy using back scattered electrons imaging as well as transmission electron microscopy. The electron microscopy revealed the internalization of ZnO nanoparticles in primary HEK after 6 h exposure at 14 microg/ml concentration. ZnO nanoparticles exhibited a time (6-24 h) as well as concentration (8-20 microg/ml) dependent inhibition of mitochondrial activity as evident by the MTT assay. A significant (p < 0.05) induction in DNA damage was observed in cells exposed to ZnO nanoparticles for 6 h at 8 and 14 microg/ml concentrations compared to control as evident in the Comet assay. This is the first study providing information on biological interactions of ZnO nanoparticles with primary human epidermal keratinocytes. Our findings demonstrate that ZnO nanoparticles are internalized by the human epidermal keratinocytes and elicit a cytotoxic and genotoxic response. Therefore, caution should be taken while using consumer products containing nanoparticles as any perturbation in the skin barrier could expose the underlying cells to nanoparticles.
418

High-resolution XEOL spectroscopy setup at the X-ray absorption spectroscopy beamline P65 of PETRA III

Levcenko, S., Biller, R., Pfeiffelmann, T., Ritter, K., Falk, H. H., Wang, T., Siebentritt, S., Welter, E., Schnohr, C. S. 30 July 2024 (has links)
A newly designed setup to perform steady-state X-ray excited optical luminescence (XEOL) spectroscopy and simultaneous XEOL and X-ray absorption spectroscopy characterization at beamline P65 of PETRA III is described. The XEOL setup is equipped with a He-flow cryostat and state-ofthe- art optical detection system, which covers a wide wavelength range of 300– 1700 nm with a high spectral resolution of 0.4 nm. To demonstrate the setup functioning, low-temperature XEOL studies on polycrystalline CuInSe2 thin film, single-crystalline GaN thin film and single-crystalline ZnO bulk semiconductor samples are performed.
419

High-resolution XEOL spectroscopy setup at the X-ray absorption spectroscopy beamline P65 of PETRA III

Levcenko, S., Biller, R., Pfeiffelmann, T., Ritter, K., Falk, H. H., Wang, T., Siebentritt, S., Welter, E., Schnohr, C. S. 30 July 2024 (has links)
A newly designed setup to perform steady-state X-ray excited optical luminescence (XEOL) spectroscopy and simultaneous XEOL and X-ray absorption spectroscopy characterization at beamline P65 of PETRA III is described. The XEOL setup is equipped with a He-flow cryostat and state-ofthe- art optical detection system, which covers a wide wavelength range of 300– 1700 nm with a high spectral resolution of 0.4 nm. To demonstrate the setup functioning, low-temperature XEOL studies on polycrystalline CuInSe2 thin film, single-crystalline GaN thin film and single-crystalline ZnO bulk semiconductor samples are performed.
420

Modeling the Complex Refractive Index of CdxZn1-xo by Spectrophotometric Characterization: An Evolutionary Approach

Falanga, Matthew 01 January 2007 (has links)
The complex refractive index is reported at room temperature for CdxZn1_xO thin film alloys for Cd composition up to 0.16. The CdxZn1_xO epilayers were grown by molecular-beam epitaxy on smooth ZnO/GaN/sapphire lattice templates. Transmission spectra were recorded by spectrophotometry in the 350-800nm wavelength range. The refractive index and extinction coefficient were derived by an evolutionary algorithm, which optimizes the Sellmeier and Forouhi-Bloomer dispersion models by a least-squares fitting to the experimental data.

Page generated in 0.016 seconds