• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The transcription factor p53: not a repressor, solely an activator

Fischer, Martin 23 March 2015 (has links) (PDF)
After almost two decades of research on direct repression by p53, I provide evidence that the transcription factor p53 solely acts as an activator of transcription. I evaluate the prominent models of transcriptional regulation by p53 based on a computational meta-analysis of genome-wide data. With this tool at hand, the major contradiction how p53 binding can result in activation of one target gene and repression of another is resolved. In contrast to most current models, solely genes activated by p53 are found to be enriched for p53 binding. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and does not support models of direct repression. Consequently, as supported by experimental data, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors are also not supported by the meta-analysis. As an alternative to these models, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21- DREAM/RB pathway. Thus, results of the meta-analysis support only two models, namely activation by direct binding of p53 to target genes and repression through activating the p53-p21-DREAM/RB pathway.
2

Pathomechanismen der sporadischen Einschlusskörperchenmyositis / molekulare Interaktionen zwischen entzündlichem und ß-amyloid-assoziiertem Zellstress im Muskel / Pathomechanism of the sporadic Inclusion body Myositis / molecular interaction between inflammatory and ß-amyloid associated cell stress in the muscle

Barthel, Konstanze 22 April 2009 (has links)
No description available.
3

The transcription factor p53: not a repressor, solely an activator

Fischer, Martin 12 February 2015 (has links)
After almost two decades of research on direct repression by p53, I provide evidence that the transcription factor p53 solely acts as an activator of transcription. I evaluate the prominent models of transcriptional regulation by p53 based on a computational meta-analysis of genome-wide data. With this tool at hand, the major contradiction how p53 binding can result in activation of one target gene and repression of another is resolved. In contrast to most current models, solely genes activated by p53 are found to be enriched for p53 binding. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and does not support models of direct repression. Consequently, as supported by experimental data, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors are also not supported by the meta-analysis. As an alternative to these models, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21- DREAM/RB pathway. Thus, results of the meta-analysis support only two models, namely activation by direct binding of p53 to target genes and repression through activating the p53-p21-DREAM/RB pathway.
4

Molekulare Zellstressmechanismen bei der hereditären Einschlusskörpermyopathie / Molecular cell stress mechanisms in hereditary inclusion body myopathy

Fischer, Charlotte Viola 05 June 2012 (has links)
No description available.

Page generated in 0.0613 seconds