• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lattice models of pattern formation in bacterial dynamics

Thompson, Alasdair Graham January 2012 (has links)
In this thesis I study a model of self propelled particles exhibiting run-and tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of bacteria such as Escherichia coli. By defining a class of models with multiple species of particle and transmutation between species we can recreate such dynamics. These models admit exact analytical results whilst also forming a counterpart to previous continuum models of run-and- tumble dynamics. I solve the externally driven non-interacting and zero-range versions of the model exactly and utilise a field theoretic approach to derive the continuum fluctuating hydrodynamics for more general interactions. I make contact with prior approaches to run-and-tumble dynamics of lattice and determine the steady state and linear stability for a class of crowding interactions, where the jump rate decreases as density increases. In addition to its interest from the perspective of nonequilibrium statistical mechanics, this lattice model constitutes an efficient tool to simulate a class of interacting run-and-tumble models relevant to bacterial motion. Pattern formation in bacterial colonies is confirmed to be able to stem solely from the interplay between a diffusivity that depends on the local bacterial density and regulated division of the cells, in particular without the need for any explicit chemotaxis. This simple and generic mechanism thus provides a null hypothesis for pattern formation in bacterial colonies which has to be falsified before appealing to more elaborate alternatives. Most of the literature on bacterial motility relies on models with instantaneous tumbles. As I show, however, the finite tumble duration can play a major role in the patterning process. Finally a connection is made to some real experimental results and the population ecology of multiple species of bacteria competing for the same resources is considered.
2

On some nonlinear partial differential equations for classical and quantum many body systems

Marahrens, Daniel January 2012 (has links)
This thesis deals with problems arising in the study of nonlinear partial differential equations arising from many-body problems. It is divided into two parts: The first part concerns the derivation of a nonlinear diffusion equation from a microscopic stochastic process. We give a new method to show that in the hydrodynamic limit, the particle densities of a one-dimensional zero range process on a periodic lattice converge to the solution of a nonlinear diffusion equation. This method allows for the first time an explicit uniform-in-time bound on the rate of convergence in the hydrodynamic limit. We also discuss how to extend this method to the multi-dimensional case. Furthermore we present an argument, which seems to be new in the context of hydrodynamic limits, how to deduce the convergence of the microscopic entropy and Fisher information towards the corresponding macroscopic quantities from the validity of the hydrodynamic limit and the initial convergence of the entropy. The second part deals with problems arising in the analysis of nonlinear Schrödinger equations of Gross-Pitaevskii type. First, we consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superfluid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in the literature. Moreover, we find that the rotation term has a considerable influence in proving finite time blow-up in the focusing case. Finally, a mathematical framework for optimal bilinear control of nonlinear Schrödinger equations arising in the description of Bose-Einstein condensates is presented. The obtained results generalize earlier efforts found in the literature in several aspects. In particular, the cost induced by the physical work load over the control process is taken into account rather then often used L^2- or H^1-norms for the cost of the control action. We prove well-posedness of the problem and existence of an optimal control. In addition, the first order optimality system is rigorously derived. Also a numerical solution method is proposed, which is based on a Newton type iteration, and used to solve several coherent quantum control problems.
3

Passeios aleatórios em redes finitas e infinitas de filas / Random walks in finite and infinite queueing networks

Gannon, Mark Andrew 27 April 2017 (has links)
Um conjunto de modelos compostos de redes de filas em grades finitas servindo como ambientes aleatorios para um ou mais passeios aleatorios, que por sua vez podem afetar o comportamento das filas, e desenvolvido. Duas formas de interacao entre os passeios aleatorios sao consideradas. Para cada modelo, e provado que o processo Markoviano correspondente e recorrente positivo e reversivel. As equacoes de balanceamento detalhado sao analisadas para obter a forma funcional da medida invariante de cada modelo. Em todos os modelos analisados neste trabalho, a medida invariante em uma grade finita tem forma produto. Modelos de redes de filas como ambientes para multiplos passeios aleatorios sao estendidos a grades infinitas. Para cada modelo estendido, sao especificadas as condicoes para a existencia do processo estocastico na grade infinita. Alem disso, e provado que existe uma unica medida invariante na rede infinita cuja projecao em uma subgrade finita e dada pela medida correspondente de uma rede finita. Finalmente, e provado que essa medida invariante na rede infinita e reversivel. / A set of models composed of queueing networks serving as random environments for one or more random walks, which themselves can affect the behavior of the queues, is developed. Two forms of interaction between the random walkers are considered. For each model, it is proved that the corresponding Markov process is positive recurrent and reversible. The detailed balance equa- tions are analyzed to obtain the functional form of the invariant measure of each model. In all the models analyzed in the present work, the invariant measure on a finite lattice has product form. Models of queueing networks as environments for multiple random walks are extended to infinite lattices. For each model extended, the conditions for the existence of the stochastic process on the infinite lattice are specified. In addition, it is proved that there exists a unique invariant measure on the infinite network whose projection on a finite sublattice is given by the corresponding finite- network measure. Finally, it is proved that that invariant measure on the infinite lattice is reversible.
4

Passeios aleatórios em redes finitas e infinitas de filas / Random walks in finite and infinite queueing networks

Mark Andrew Gannon 27 April 2017 (has links)
Um conjunto de modelos compostos de redes de filas em grades finitas servindo como ambientes aleatorios para um ou mais passeios aleatorios, que por sua vez podem afetar o comportamento das filas, e desenvolvido. Duas formas de interacao entre os passeios aleatorios sao consideradas. Para cada modelo, e provado que o processo Markoviano correspondente e recorrente positivo e reversivel. As equacoes de balanceamento detalhado sao analisadas para obter a forma funcional da medida invariante de cada modelo. Em todos os modelos analisados neste trabalho, a medida invariante em uma grade finita tem forma produto. Modelos de redes de filas como ambientes para multiplos passeios aleatorios sao estendidos a grades infinitas. Para cada modelo estendido, sao especificadas as condicoes para a existencia do processo estocastico na grade infinita. Alem disso, e provado que existe uma unica medida invariante na rede infinita cuja projecao em uma subgrade finita e dada pela medida correspondente de uma rede finita. Finalmente, e provado que essa medida invariante na rede infinita e reversivel. / A set of models composed of queueing networks serving as random environments for one or more random walks, which themselves can affect the behavior of the queues, is developed. Two forms of interaction between the random walkers are considered. For each model, it is proved that the corresponding Markov process is positive recurrent and reversible. The detailed balance equa- tions are analyzed to obtain the functional form of the invariant measure of each model. In all the models analyzed in the present work, the invariant measure on a finite lattice has product form. Models of queueing networks as environments for multiple random walks are extended to infinite lattices. For each model extended, the conditions for the existence of the stochastic process on the infinite lattice are specified. In addition, it is proved that there exists a unique invariant measure on the infinite network whose projection on a finite sublattice is given by the corresponding finite- network measure. Finally, it is proved that that invariant measure on the infinite lattice is reversible.

Page generated in 0.0546 seconds