• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 13
  • 12
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 17
  • 15
  • 15
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Parametric Comparative Study Of Electrocoagulation And Coagulation Of Aqueous Suspensions Of Kaolinite And Quartz Powders

Gulsun Kilic, Mehtap 01 December 2009 (has links) (PDF)
Mineral treatment processes generally produce wastewaters containing ultrafine and colloidal particles that cause pollution upon their discharge into environment. It is essential that they should be removed from the wastewater before discharge. This study was undertaken by using synthetic turbid systems containing kaolinite and quartz particles in water with the amount of 0.20 g/L and 0.32 g/L, respectively. Removal of the turbidity was tried in two ways / electrocoagulation with aluminum anode and conventional coagulation with aluminum sulfate. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. This study was also performed to compare electrocoagulation and conventional coagulation regarding the pH ranges under investigation and coagulant dosages applied. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of ultrafine particles from suspensions. Coagulation was more effective in a wider pH range (pH 5-8) than electrocoagulation, which yielded optimum effectiveness in a relatively narrower pH range around 9. In both methods, these pH values corresponded to near-zero zeta potentials of coagulated kaolinite and quartz particles. The mechanism for both coagulation methods was aggregation through charge neutralization and/or enmeshment in aluminum hydroxide precipitates. Furthermore, the experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (&lt / 10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.
32

Effect Of Carbonate Alkalinity On The Flocculation Behavior Of Hematite

Molaei, Aysan 01 August 2012 (has links) (PDF)
As high grade iron ore deposits are rapidly depleted, the minerals industry is increasingly obliged to enrich their ores and process lower grade iron ores. Production of large quantities of fine ores as tailings or by-products in mining operations and mineral liberation at fine particle sizes have led to the development of concentration methods employed to fine ores. Selective flocculation is one of the beneficial methods which can be used in recovering of very fine particles It is obvious that process water chemistry has a significant influence on the flocculation efficiency, and the water chemistry is deeply affected by carbon dioxide dissolution. Carbonate content of natural waters regulated by CO2, carbonicacid and solid carbonatesis known as &lsquo / carbonate alkalinity&rsquo / whichmay be an important factor in flocculation especially at alkaline pH. Selective flocculation of iron ores is usually run at around pH 11 where carbonate alkalinity could be rather high. There have been no reports in literature regarding the effect of carbonate alkalinity on the flocculation behavior of iron oxides, mainly hematite. In this study, the flocculation behavior of iron ores with starch under different alkalinities has been investigated. The extent of flocculation has been assessed by settling rate and suspended solid content measurements at different starch doses and pH values. Zeta potential measurements and starch adsorption studies were carried out to explain these effects by carbonate alkalinity. According to the results, flocculation is enhanced by addition of low amount of carbonate alkalinity, less than 2.4 mEq/L. However, adding the higher amount of alkalinity adversely affected the flocculation of hematite. Similar behavior was also observed during the starch adsorption tests, larger amount of starch wasadsorbed by hematite in low alkalinity compared to high alkalinity. Zeta potential measurements indicate that, by increasing the carbonate alkalinity of suspension, zeta potential values of solids will become more negativeleading to an increase in the stability of suspension and then adversely affecting flocculation. Therefore, as carbonate alkalinity has a significant effect on the flocculation of hematite, it should be seriously taken into account to optimize the selective flocculation of hematite ores.
33

Role Of Interfacial Phenomena In Bioprocessing Of Minerals Using Bacillus Polymyxa

Shashikala, A R 02 1900 (has links)
In recent years there has been growing interest in bio-mineral processing due to its low operating costs and its application in processing lean-grade ores. Bioprocessing is a good alternative to conventional hydrometallurgy process in mineral processing. In recent times microorganisms have been used as surface modifiers in processes such as froth flotation and flocculation. The surface properties of microbes and minerals such as zeta potential and surface hydrophobicity play a major role in determining adhesion of microorganisms to minerals and hence, the efficiency of flocculation and flotation. These properties also depend on solution conditions such as pH and ionic strength. Adhesion of microorganisms to mineral surfaces can alter the surface properties of the minerals. Such surface modification imparting hydrophobicity or hydrophilicity is used in flocculation and flotation of fine particles. In this research work the effect of ionic strength and pH in deteraiining the surface properties and hence adhesion of the bacterium Bacillus polymyxa to minerals such as hematite, quartz and coal has been studied in detail. The effect of the ionic strength and pH on the electrokinetics of the minerals and bacteria and its subsequent effect on adhesion and flocculation were investigated in detail. Contact angle measurements along with the zeta potential results were used to calculate the interaction energies between the mineral and the microorganism to establish a mechanism for the interaction. The following major conclusions can be drawn from this study. Results indicate that increase in the ionic strength significantly changes the zeta potential of hematite and bacteria without varying the isoelectric point. Increase in the ionic strength caused very little change in the zeta potential of quartz and coal. The adhesion of bacterial cells on to the minerals was found to be dependent on pH, ionic strength and conditioning time. Adhesion of bacterial cells was found to be more on hematite and coal when compared to quartz. The adsorption isotherms of Bacillus polymyxa cells with respect to all the three minerals were found to obey Langmuir isotherm. Flocculation studies demonstrated that the settling rate of hematite and coal was enhanced in presence of bacterial cells and electrolyte. However quartz settled much slower under the same conditions indicating that the quartz particles are being dispersed. Thus, selective flocculation of hematite and coal is possible which can be used in separating them from quartz effectively. The different components of total interaction energy arising from Lifshitz-van der Waal forces, acid/base forces and electrostatic forces were calculated using the van Oss approach. Calculation of the components of the acid base free energy showed that coal and hematite were hydrophobic compared to quartz and the bacterium. From total interaction energy calculation based on the extended DLVO theory, hematite and coal were found to have a net negative interaction energy in acidic pH values and hence attractive forces are predominant. Quartz was found to have a net repulsive energy at all the pH values at low ionic strengths but increase in ionic strength the interaction energy become attractive. The AGLW values of quartz was found to be attractive which is probably responsible for bacterial adhesion onto quartz.
34

An investigation of the relation between carboxyl content and zeta potential

Clapp, Richard Thomas, January 1972 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1972. / Includes bibliographical references (p. 78-81).
35

A study of the colloidal stability of mixed abrasive slurries of silica and ceria nanoparticles for chemical mechanical polishing

Lin, Fangjian Unknown Date
No description available.
36

A fundamental study of bubble-particle interactions through zeta-potential distribution analysis

Wu, Chendi Unknown Date
No description available.
37

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs

Alotaibi, Mohammed 2011 December 1900 (has links)
Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.
38

Estudo das propriedades eletricas das hemacias utilizando pinça optica / Study of electrical properties of red blood cell using optical tweezers

Fernandes, Heloise Pockel 14 August 2018 (has links)
Orientadores: Maria Lourdes Barjas-Castro, Carlos Lenz Cesar / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-14T15:31:46Z (GMT). No. of bitstreams: 1 Fernandes_HeloisePockel_M.pdf: 11930391 bytes, checksum: ee8655790477f44b4f7a68132905dc0c (MD5) Previous issue date: 2009 / Resumo: A membrana eritrocitária contém proteínas e glicoproteínas imersas em uma bicamada lipídica que possui um comportamento viscoelástico. Algumas glicoproteínas contém ácido siálico, que é o principal responsável pelas cargas negativas na superfície da hemácia que quando em solução cria um potencial elétrico (Ç) repulsivo. A carga elétrica negativa da superfície eritrocitária influencia na distribuição dos íons da solução ao redor da célula formando uma dupla camada de íons. A primeira, conhecida como camada compacta de cargas ou "Stern" é formada por íons rigidamente ligados à hemácia e a segunda camada é composta por íons distribuídos difusamente e conhecida como camada difusa. O objetivo deste estudo foi medir o potencial zeta (Ç), a espessura da dupla camada das cargas iónicas (DLC) ao redor da hemácia, e a força de agregação eritrocitária com diferentes meios potencializadores da aglutinação utilizando pinça óptica. (...continua) / Abstract: The red blood cell (RBC) membrane contains proteins and glycoproteins embedded in a fluid lipid bilayer that confers viscoelastic behavior. Sialylated glycoproteins of the RBC membrane are responsible for a negatively charged surface, which creates a repulsive electric zeta potential (Z) between the cells.The compact layer of charge or Stern consists of ions rigidly bonded to the cell and the double layer includes ions diffusely distributed around the cell. The aim of this study was to measure the RBC double layer thickness of the charge (DLC) around the cell, zeta potential (Z) and cell aggregation force in agglutination potentiator solutions, using optical tweezers. (¿to be continue) / Mestrado / Mestre em Farmacologia
39

Elaboração e caracterização de filmes coacervados à base de gelatina/quitosana, gelatina/pectina e gelatina/goma arábica / Preparation and characterization of coacervates films on based gelatin/chitosan, gelatin/pectin and gelatin/gum arabic

Braga, Andréa Helena Ferreira, 1980- 09 October 2013 (has links)
Orientador: Carlos Raimundo Ferreira Grosso / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-23T08:09:57Z (GMT). No. of bitstreams: 1 Braga_AndreaHelenaFerreira_D.pdf: 2190091 bytes, checksum: 46376779b7866dd62ac05c2a6abc7be6 (MD5) Previous issue date: 2013 / Resumo: A eficiente combinação entre proteínas e polissacarídeos produz filmes biodegradáveis com melhores propriedades funcionais, a interação associativa entre os grupamento presentes na cadeia polimérica dos biopolímeros gera uma rede polimérica mais coesa e resistente. Esta associação, em geral, ocorre através das interações eletrostáticas entre os biopolímeros que é controlada pelas condições de pH, força iônica e proporção estequiométrica dos polimeros, entre outros parâmetros. O objetivo deste trabalho foi utilizar o método de coacervação na elaboração de filmes a base de gelatina-quitosana (GEL/QUI), gelatina-pectina (GEL/PEC) e de gelatina-goma arábica (GEL/GAR) com o intuito de promover maiores interações intermoleculares entre os biopolímeros, formando filmes mais resistentes mecanicamente e menos susceptíveis a ação da água. O desenvolvimento deste trabalho pode ser dividido em: 1-) Análise da solução filmogênica de GEL/QUI ou PEC ou GAR (em várias proporções estequiométricas): nesta etapa foi feito um estudo para definir o pH de coacervação para cada formulação utilizando o ?-potencial zeta. No pH de coacervação ocorre a máxima interação eletrostática entre os biopolímeros gerando carga elétrica neutra para a solução filmogênica (?-potencial zeta igual a zero), devido a neutralização da carga elétrica positiva (-NH4+) com a carga elétrica negativa (-COO-) dos biopolímeros. 2-) Elaboração dos filmes coacervados foi realizada em várias proporções estequiométricas no seu devido pH de coacervação. 3-) Caracterização dos filmes de acordo com o aspecto visual, propriedades mecânicas, permeabilidade ao vapor de água (PVA), solubilidade em água (SOL), umidade (UMI) e opacidade (Op). Análises complementares de difração de raio-X (DRX), espectroscopia de infravermelho (FTIR), microscopia eletrônica de varredura (MEV) e calorimetria diferencial de varredura (DSC) foram realizadas em alguns filmes. 4-) Seleção dos filmes: foi escolhida a proporção estequiométrica que produziu filmes com maior resistência mecânica, menor PVA e SOL. 5-) Concentração do material polimérico: na formulação selecionada foram testadas maiores concentrações de material polimérico (4, 6, 8 e 10%) com o intuito de reduzir o tempo de secagem dos filmes coacervados. Estes filmes foram novamente caracterizados (propriedades mecânicas, PVA, SOL e UMI). A concentração de material polimérica escolhida para prosseguir o estudo associou o menor tempo de secagem sem alterar a PVA e SOL dos filmes. 6-) Adição do plastificante: nesta etapa foi avaliado o tipo de plastificante (triacetina e glicerol) e a sua concentração (2,5, 5, 7,5, 10, 15, 20, 25 e 30g de plastificante/100g de material polimérico). Os filmes coacervados de GEL/QUI foram elaborados em pH alcalino (pH de coacervação entre 6,2-7,2) por combinar um polissacarídeo catiônico (QUI) com a GEL. Formulações com maior teor de GEL (10:1 e 20:1 de GEL/QUI) confere ao filme coacervado maior resistência à ruptura, flexibilidade e menor PVA. As análises de difração de raio-X e de FTIR evidenciam a presença de interações eletrostáticas atrativas entre as cadeias da gelatina e a quitosana. Ao comparar os filmes coacervados com os filmes compostos (sem ajuste de pH) verificou-se que o método de coacervação conferiu ao filme maior tensão na ruptura, menor PVA e menor SOL. Ao aumentar a concentração de material polimérico de 2% para 6% constatou-se redução pela metade do tempo de secagem, além de promover maior resistência a ruptura e menor PVA. Os filmes coacervados de GEL/PEC e GEL/GAR foram elaborados em pH ácido (pHcoacervação igual a 4,0 e 4,5-5,0, respectivamente), isto ocorre devido a interação do grupo carboxil (-COO-) dos polissacarídeos aniônicos com o grupo amina (-NH4+) da GEL, já que a proteína encontra-se carregada positivamente somente em pHs abaixo do seu ponto isoelétrico - pI (pI da GEL 4,8-5,2). Para filme coacervado de GEL/PEC, somente a solução filmogênica contendo 20:1 de GEL/PEC apresentou-se homogênea e com em condição de coacervação (pHcoacervação=4,0). O espectro de FTIR do filme coacervado de GEL/PEC (20:1) mostrou que o grupo carboxil da PEC pode estar interagido com o grupo amina da GEL gerando novos grupamentos amida (1630 e 1530 cm-1). A incorporação do glicerol foi mais eficiente na matriz polimérica da GEL/PEC do que a triacetina, isto foi comprovado pela análise visual e pela difração de raio-X. Filmes coacervados de GEL/GAR apresentaram-se coesos, uniformes e homogêneos. Filmes coacervados com alto teor de GEL mostraram-se mais resistentes e flexíveis e menos solúveis em água do que as formulações com menor teor de GEL (1:1 e 2:1 de GEL/GAR), resultados confirmados pelas análises de FTIR, DSC e DRX. O método de coacervação formou filmes mais resistentes mecanicamente e a ação da água do que nos filmes não coacervados (sem ajuste de pH). O aumento da concentração do material polimérico de 2 para 6% reduziu o tempo de secagem do filme de GEL/GAR (10:1) pela metade sem alterar suas propriedades funcionais. Todos os filmes coacervados de GEL/QUI, PEC ou GAR, de modo geral, apresentaram o mesmo comportamento frente a a adição do plastificante. A adição do glicerol foi mais eficiente devido sua melhor incorporação na matriz polimérica produzindo filmes coacervados mais flexíveis, mais resistentes, com menor PVA e mais transparentes do que os filmes coacervados contendo triacetina. Os resultados apresentados neste trabalho confirmam a eficiencia do método de coacervação em melhorar a compatibilidade, e consequentemente, intensificando a interação eletrostáticas entre a proteína e o polissacarídeo. Isto reflete diretamente nas propriedades funcionais dos filmes coacervados, pois a maior interação entre os biopolímeros promove a formação de uma rede polimérica mais densa e coesa, gerando filmes com maior TR, menor PVA, menor ELO e em alguns formulações mais resistentes a ação da água (menor SOL) / Abstract: The efficient combination of proteins and polysaccharides produces biodegradable films with improved functional properties; the associative interaction between the groupings present in the polymer chain of biopolymers generates a more cohesive and resistant polymer network. This association generally occurs through electrostatic interactions between the biopolymers which is controlled by the conditions of pH, ionic strength and stoichiometric ratio of polymers, among other parameters. The aim of this study was to use the coacervation method in developing films based on gelatin-chitosan (GEL/QUI), on gelatin-pectin (GEL/PEC) and on gelatin-gum arabic (GEL/GAR), in order to promote greater intermolecular interactions between biopolymers, forming mechanically stronger films and less susceptible to the action of water. The development of this work can be divided into: 1-) Analysis of the film solution GEL/QUI or PEC or GAR (in various stoichiometric ratios): in this step a study was done to determine the pH of coacervation for each formulation using ?-zeta potential. At pH of coacervation occurs maximum electrostatic interaction between biopolymers generating a neutral electric charge for filmogenic solution (? - zeta potential of zero), due to neutralization of the positive charge (-NH4+) with negative charge (-COO-) of biopolymers. 2-) Development of coacervated films was held in various stoichiometric ratios in its proper pH of coacervation. 3-) Characterization of films according to the visual appearance, mechanical properties, permeability to water vapor (PVA) water solubility (SOL), humidity (UMI) and opacity (Op). Complementary analyzes of X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differencial scanning calorimetry (DSC) were performed in some films. 4-) Selection of films: it was chosen a Stoichiometric ratio which produced films with higher mechanical strength and lower PVA SOL. 5-) Concentration of polymeric material: higher concentration of polymeric material (4, 6, 8, and 10% ) were tested in the selected formulation in order to reduce the drying time of the coacervated films. These films were further characterized (mechanical properties, PVA, SOL and UMI). The concentration of polymeric materials chosen for further study associated the lowest drying time without changing the SOL and PVA films. 6-) Addition of plasticizer: In this step the type of plasticizer (triacetin or glycerol) and its concentration was evaluated (2.5, 5, 7.5, 10, 15, 20, 25 and 30g plasticizer/100g polymeric material). The coacervated films GEL/CHI were prepared at alkaline pH (pH of coacervation between 6.2-7.2) by combining a cationic polysaccharide (QUI) with GEL. Formulations with higher content of gel (10:1 and 20:1 GEL/QUI) gave the coacervated film higher tensile strength, flexibility and less PVA. The analysis of X- ray diffraction and FTIR showed the presence of attractive electrostatic interactions between the chains of gelatin and chitosan. Comparing coacervated films with composite films (without pH adjustment) it was found that the coacervation method gave the highest film tensile strength, lower PVA and lower SOL. By increasing the concentration of polymeric material from 2% to 6% a reduction by half of the drying time was found promoting a greater resistance to breakage and lower PVA. The coacervate films GEL/PEC and GEL/GAR were prepared in acidic pH (pH of coacervation equal to 4.0 and 4.5 to 5.0, respectively), this occurs due to interaction carboxyl group (-COO-) of anionic polysaccharides with amino group (-NH4+) of GEL, since the protein is positively charged at pHs only below its isoelectric point - pI (pI of 4.8 to 5.2 GEL). To coacervate film GEL/PEC, only film solution containing 20:1 GEL/PEC appeared homogeneous and in condition coacervation (pH of coacervation = 4.0). The FTIR spectrum of the coacervated film GEL/PEC (20:1) showed that the carboxyl group of the PEC may have been interacted with the amino group generating new clusters of GEL amide (1630 and 1530 cm-1). The incorporation of the glycerol was more efficient in the polymer matrix of GEL/PEC than triacetin. It was confirmed by visual analysis and by X -ray diffraction. Films coacervated GEL/GAR presented themselves cohesive, uniform and homogeneous. Coacervated films with high gel content were more resistant and flexible and less soluble in water than the formulations with lower content of gel (1:1 to 2:1 GEL/GAR), which was confirmed by analysis of FTIR, DSC and XRD. The coacervation method formed films more mechanical and water resistant than in the non coacervated films. (without pH adjustment). Increasing the concentration the polymeric material from 2 to 6 % reduced the drying time of the film GEL/GAR (10:1) by half without altering their functional properties. All coacervated films GEL/QUI, PEC or GAR, in general, showed the same behavior in addition of plasticizer. The addition of glycerol was more efficient because of its better incorporation into the polymer matrix coacervated producing more flexible films, tougher, with less PVA and more transparent than coacervated films containing triacetin. The results presented here confirm the efficiency of the coacervation method to improve the compatibility, thus intensifying the electrostatic interaction between protein and polysaccharide. This highly reflects in the functional property of coacervated films, since the bigger interaction among biopolymers promotes the formation of more dense and united polymeric net, generating films with higher TR, smaller PVA, less ELO in some formulations and more resistant to the action of water (less SOL) / Doutorado / Consumo e Qualidade de Alimentos / Doutora em Alimentos e Nutrição
40

Structuration par voie colloïdale de nanopoudres de boehmite à partir de systèmes mixtes organique/inorganique / Structuration by colloidal way of nanopowders boehmite from organic/inorganic hybrid systems

Belounis, Fahouzi 02 July 2015 (has links)
La recherche s’appuie pour une grande part sur le développement de nanomatériaux. Ceux-ci constituent, en effet, les matières premières des nanosciences et ouvrent à l’industrie des perspectives extrêmement larges. Le développement des céramiques nécessite une grande maîtrise des procédés d'élaboration qui permettent d'obtenir des microstructures appropriées à l’élaboration de matériaux denses pour différentes applications par exemple biomédicales. Les évolutions récentes concernent les matériaux hybrides et bio-inspirés ; les problèmes de mise en forme et de structuration multi-échelles de ces derniers incitent au développement de nouveaux procédés telle que l’approche nouvelle dite ascendante (bottom-up) consistant à fabriquer un matériau à échelle microscopique voir macroscopique à partir de ses particules nanométriques.Dans ce contexte, les travaux de cette thèse ont pour objectif de faciliter, par l’intermédiaire d’une modification de surface, la mise au point d’une technique de mise en forme originale pour l’élaboration de céramiques issues d’un matériau nanométrique de type oxyde: la granulation par coagulation. Nous nous sommes intéressés au cas d’une nanopoudre de boehmite (AlO(OH)). Cependant, cette poudre nanométrique de boehmite présente de multiples instabilités en suspension. En effet, cette poudre est soumise à de fortes gélifications en fonction du pH et à basse concentration. Il est nécessaire dans ce cas pour obtenir une suspension stable de modifier les propriétés de surface. En conséquence, une partie de ces travaux est consacrée à la fonctionnalisation de surface par des organosilanes. Cette modification de surface n’est cependant qu’une étape à l’obtention d’une particule hybride constituée d’un cœur de boehmite et d’une couche polymérique. En réalité, le greffage d’organosilane à la surface permet de créer un pont entre la partie centrale inorganique et la partie externe organique constituée de latex pouvant se lier à l’organosilane utilisé (le MPS).Le matériau hybride boehmite-MPS-latex ainsi obtenu peut être utilisé dans une nouvelle technique de mise en forme colloïdale inspirée de la granulation par hétérocoagulation. En milieu aqueux, la polarité opposée des charges de surfaces de deux entités différentes conduit à l’hétérocoagulation en suspension. La coagulation observée dans cette thèse, met en relation deux particules identiques possédant chacune, les deux charges opposées à leur surface. Le principe de la granulation consiste à induire, sous l’effet d’un mouvement de rotation des échantillons, la coalescence des agglomérats en forçant leurs surfaces à interagir par contacts réciproques. En sélectionnant la formulation, la coalescence conduit à l'élaboration d'objets sphériques homogènes en taille et en forme. / Research in this field is multidisciplinary and relies largely on the development of nanomaterials. These are, in fact, the raw materials of nanoscience and open to industry extremely broad prospects. In the field of material sciences, nanostructured materials, among them nanostructured ceramics have grown considerably in recent years. Development of ceramic requires a mastery of production processes that achieve appropriate microstructures in the development of dense materials for various applications such biomédicals. Recent developments include hybrid and bio-inspired materials; the problems of shaping and multi-scale structure of these encourage the development of new processes such as the new so-called bottom-up approach of manufacturing and make macroscopic material from its nanoparticles. In this context, the work of this PhD aim to facilitate, through surface modification, the development of an original layout technique for the development of ceramics from a material nano-oxide type: granulation coagulation. We were interested in the case of a boehmite nanopowder (AlO(OH)). However, this nanoscale boehmite powder has many instabilities in suspension. Indeed, the powder is subjected to strong gelation as function of pH and at low concentrations. It is necessary in this case to obtain a stable suspension by modifying the surface properties. Accordingly, a part of this work is devoted to surface functionalization by organosilanes. This surface modification, however, is only one stage to obtain a hybrid particle comprised of a heart of boehmite and a polymeric layer. In reality, the grafting organosilane (MPS) at the surface permit to create a bridge between the inorganic core and organic outer part consists of latex. The boehmite-MPS-latex hybrid material thus obtained can be used in a new colloidal shaping technique inspired by heterocoagulation granulation. In aqueous medium, the opposite polarity of the charges of the surfaces of two different entities leads to heterocoagulation in suspension. Clotting observed in this thesis, connects two identical particles with each, the two charges opposite to the surface. The principle of the granulation is to induce, under the effect the rotational movement, the coalescence of the agglomerates by forcing their surfaces to interact by mutual contact. By selecting the formulation, coalescence leads to the development of homogeneous spherical objects in size and shape.

Page generated in 0.06 seconds