Spelling suggestions: "subject:"zinc ion oxide"" "subject:"inc ion oxide""
1 |
Identification de marqueurs d’exposition et d’effets de nanoparticules métalliques sur modèle in vitro / Exposure and effect biomarkers identification after exposure of in vitro cell model to metallic nanoparticlesDoumandji, Zahra 03 May 2019 (has links)
En conséquence de l'extension de l’utilisation des nanoparticules dans différents secteurs industriels, le nombre de travailleurs potentiellement exposés ne cesse de croître, sans parfaitement connaître les propriétés toxicologiques de ces matériaux. Étant donné que les nanoparticules peuvent se trouver en suspension dans l’atmosphère professionnelle, l'inhalation représente une voie d'exposition professionnelle majeure. De ce fait, l’évaluation des risques liés à l’exposition aux nanomatériaux requiert d’entreprendre des études de toxicologie sur des modèles cellulaires des voies aériennes. Dans ce manuscrit, les réponses cellulaires et moléculaires des macrophages alvéolaires de rat (NR8383) exposés à des nanoparticules d’oxydes métalliques : ZnO, ZnFe2O4, NiZnFe2O4, Fe2O3, TiO2-NM105 et TiO2-NRCWE001, ont été étudiées, en combinant des analyses toxicologiques classiques (caractérisation des nanoparticules par microscopie électronique à transmission et par diffusion dynamique de la lumière, évaluation de la cytotoxicité par tests WST-1 et libération de LDH); et de criblage moléculaire à haut débit (analyses de transcriptomique et de protéomique). Des cellules NR8383 ont été exposées aux nanoparticules ZnO, ZnFe2O4, NiZnFe2O4, Fe2O3, TiO2-NM105 et TiO2-NRCWE001 pendant 24 h ce qui a permis de déterminer une dose sub-toxique pour chaque nanoparticule à laquelle les macrophages ont été exposés pour l’analyse moléculaire. Quatre heures suite à l’exposition des cellules aux nanoparticules, de nombreux gènes et protéines étaient différentiellement exprimés. Le stress oxydant était la réponse biologique adverse suite à l’exposition des cellules aux nanoparticules composées de zinc. En revanche, l’inflammation était la principale voie activée dans les cellules exposées à la forme anatase et rutile des nanoparticules de TiO2. En conclusion, cette étude expose les « empreintes biologiques » des deux groupes de nanoparticules d’intérêt. Enfin, notre étude combinée à des travaux antérieurs de la littérature pourraient aussi être profitables pour valider les biomarqueurs d’exposition et d’effets aux nanomatériaux suggérés afin de prédire les effets biologiques adverses. / As a consequence of the extension of the use of nanoparticles in different industrial sectors, the number of potentially exposed workers continues to grow, without fully knowing the toxicological properties of these materials. Since nanoparticles can be aerosolized in the occupational atmosphere, inhalation is the major occupational exposure route. For this reason, risk assessment of exposure to nanomaterials requires toxicology studies to be conducted on cellular models of the airways. In this manuscript, the cellular and molecular responses of rat alveolar macrophages (NR8383) exposed to metallic oxide nanoparticles: ZnO, ZnFe2O4, NiZnFe2O4, Fe2O3, TiO2-NM105 and TiO2-NRCWE001, were studied, combining conventional toxicological analyzes (characterization of nanoparticles by transmission electron microscopy and dynamic light scattering, evaluation of cytotoxicity by WST-1 assays and LDH release); and high throughput molecular screening (transcriptomic and proteomic analyzes). NR8383 cells were exposed to the ZnO, ZnFe2O4, NiZnFe2O4, Fe2O3, TiO2-NM105 and TiO2-NRCWE001 nanoparticles for 24 h which allowed for the determination of a sub-toxic dose for each nanoparticle to which the macrophages were exposed for molecular analysis. Four hours after exposure NR8383 to nanoparticles, many genes and proteins were differentially expressed. Oxidative stress was the adverse biological response following exposure of cells to nanoparticles composed of zinc. In contrast, inflammation was the main activated pathway in cells exposed to the anatase and rutile form of TiO2 nanoparticles. In conclusion, this study exposes the "biological fingerprints" of the two groups of nanoparticles of interest. Finally, our study, combined with previous literature studies, could also be beneficial in validating biomarkers of exposure and effects of nanomaterials suggested in order to predict adverse biological effects.
|
2 |
Laser-pyrolysed ZnFe2O4 anode for lithium-ion batteries : understanding of the lithium storage mechanisms / Développement de nanoparticules de ZnFe2O4 pour la réalisation d'électrodes innovantes pour le stockage électrochimiqueBourrioux, Samantha 02 February 2018 (has links)
Le graphite est le matériau d’électrode négative utilisé actuellement dans les batteries lithium-ion commerciales. Celui-ci souffre malheureusement d’une capacité spécifique relativement faible (372 mAh.g-1) ; son remplacement par un matériau de conversion comme l’oxyde ZnFe2O4, de capacité théorique plus élevée (1001 mAh.g-1) permettrait d’augmenter la capacité de stockage des batteries lithium-ion. Travailler avec des nanoparticules de ZnFe2O4 permettrait également de limiter l’expansion volumique à laquelle est soumis le matériau en cours de cyclage tout en améliorant la cinétique des ions lithium. Des nanopoudres ZnFe2O4 ont été synthétisées au Laboratoire Edifices Nanométriques (LEDNA) du CEA par la méthode de pyrolyse laser. Cette méthode de synthèse flexible a permis d’obtenir des nanopoudres d’oxydes zinc-fer de morphologies différentes grâce à l’ajustement de différents paramètres expérimentaux (précurseurs utilisés, choix et débit des gaz). Les performances électrochimiques de ces nanomatériaux ont été évaluées en demi-cellule face à une contre-électrode de lithium métallique. Des cyclages galvanostatiques à différentes vitesses ont été réalisés à l’Université Technologique de Nanyang (NTU) à Singapour. Les mécanismes fondamentaux régissant le stockage du lithium dans l’oxyde ZnFe2O4 mais aussi dans un mélange ZnO/Fe2O3 ont été étudiés par le biais de caractérisations operando (DRX, 57Fe Mössbauer), en collaboration avec l’Institut Charles Gerhardt de l’université de Montpellier (ICGM). Ces travaux de thèse ont permis de mettre en évidence les performances électrochimiques prometteuses d’une morphologie spécifique de ZnFe2O4 consistant en une population de taille bimodale de particules, ainsi que d’identifier les réactions de lithiation et de délithiation lors des cyclages. / Graphite is currently used as negative electrode material in commercial lithium-ion batteries. Unfortunately, this material suffers from a relatively low specific capacity (372 mAh.g-1). Its substitution by a conversion material with a higher specific capacity as ZnFe2O4 (1001 mAh.g-1) would be interesting to increase the capacity of lithium-ion batteries.The use of nanomaterials can also limit the volumetric expansion of the electrode during cycling and enhance lithium ions kinetics.ZnFe2O4 nanopowders were synthesized in the Nanometric Structures Laboratory at the CEA (Atomic Energy and Alternative Energies Commission) by laser pyrolysis. This flexible synthesis method allowed the production of zinc iron oxides nanopowders with different morphologies, depending on the chosen experimental parameters (precursors, choice of gases and flow rates). Electrochemical performances were then evaluated vs. metallic lithium at the Energy Lab of Nanyang Technological University. Fundamental lithium storage mechanisms for ZnFe2O4 oxide were investigated by operando characterizations (XRD and 57Fe Mössbauer) and compared with those of a ZnO/Fe2O3 mixture. This study was realized in collaboration with the Charles Gerhardt Institute (University of Montpellier).This works highlighted the promising electrochemical performances of a specific morphology of ZnFe2O4 nanoparticles, consisting in a bimodal size population of particles, and allowed the deeper understanding of the lithiation and delithiation reactions.
|
Page generated in 0.0899 seconds