• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Occupational Safety Surveillance Using a Statistical Monitoring Approach

Schuh, Anna Kristine 10 May 2013 (has links)
When unsafe conditions arise in a workplace, they may result in employee accidents and fatalities. However, if these problems are detected early, new hazard controls and safety initiatives can be introduced in order to actively reduce or prevent the occurrence of these events. Unfortunately, many safety systems currently monitor and report data that has been aggregated over long time periods, making it difficult to realize and respond to pattern shifts in a timely manner. When monitoring a process over time, a commonly used tool is statistical process control charting. Traditionally used in manufacturing, control charts indicate a deviation from historically "normal" or "in-control" behavior and have become increasingly common in healthcare and public health monitoring. This dissertation studies the use of control charts to monitor the frequency of occupational safety incidents, with the overarching goal of investigating the effects of data aggregation on the detection performance of these charts. Specifically, this dissertation 1) qualitatively establishes the need for more frequent monitoring of safety incidents; 2) investigates the comparative performance of control charts with aggregated and non-aggregated data for the detection of increased accident frequency, using a case study with data from an industrial partner; 3) more generally compares the performance of these charts for a Poisson process with a range of simulated process shifts; and 4) discusses the potential future challenges of including accident severity in quantitative safety monitoring systems. The comprehensive results indicate that lower degrees of data aggregation are preferred, and suggestions for better data collection and employee communication practices are offered to aid the transition for companies. / Ph. D.
2

Developing accident-speed relationships using a new modelling approach

Imprialou, Maria-Ioanna January 2015 (has links)
Changing speed limit leads to proportional changes in average speeds which may affect the number of traffic accident occurrences. It is however critical and challenging to evaluate the impact of a speed limit alteration on the number and severity of accidents due primarily to the unavailability of adequate data and the inherent limitations of existing approaches. Although speed is regarded as one of the main contributory factors in traffic accident occurrences, research findings are inconsistent. Independent of the robustness of their statistical approaches, accident frequency models typically use accident grouping concepts based on spatial criteria (e.g. accident counts by link termed as a link-based approach). In the link-based approach, the variability of accidents is explained by highly aggregated average measures of explanatory variables that may be inappropriate, especially for time-varying variables such as speed and volume. This thesis re-examines accident-speed relationships by developing a new accident data aggregation method that enables improved representation of the road conditions just before accident occurrences in order to evaluate the impact of a potential speed limit increase on the UK motorways (e.g. from 70 mph to 80 mph). In this work, accidents are aggregated according to the similarity of their pre-accident traffic and geometric conditions, forming an alternative accident count dataset termed as the condition-based approach. Accident-speed relationships are separately developed and compared for both approaches (i.e. link-based and condition-based) by employing the reported annual accidents that occurred on the Strategic Road Network of England in 2012 along with traffic and geometric variables. Accident locations were refined using a fuzzy-logic-based algorithm designed for the study area with 98.9% estimated accuracy. The datasets were modelled by injury severity (i.e. fatal and serious or slight) and by number of vehicles involved (i.e. single-vehicle and multiple-vehicle) using the multivariate Poisson lognormal regression, with spatial effects for the link-based model under a full Bayesian inference method. The results of the condition-based models imply that single-vehicle accidents of all severities and multiple-vehicle accidents with fatal or serious injuries increase at higher speed conditions, particularly when these are combined with lower volumes. Multiple-vehicle slight injury accidents were not found to be related with higher speeds, but instead with congested traffic. The outcomes of the link-based model were almost the opposite; suggesting that the speed-accident relationship is negative. The differences between the results reveal that data aggregation may be crucial, yet so far overlooked in the methodological aspect of accident data analyses. By employing the speed elasticity of motorway accidents that was derived from the calibrated condition-based models it has been found that a 10 mph increase in UK motorway speed limit (i.e. from 70 mph to 80 mph) would result in a 6-12% increase in fatal and serious injury accidents and 1-3% increase in slight injury accidents.
3

Risk assessment for integral safety in operational motion planning of automated driving

Hruschka, Clemens Markus 14 January 2022 (has links)
New automated vehicles have the chance of high improvements to road safety. Nevertheless, from today's perspective, accidents will always be a part of future mobility. Following the “Vision Zero”, this thesis proposes the quantification of the driving situation's criticality as the basis to intervene by newly integrated safety systems. In the example application of trajectory planning, a continuous, real-time, risk-based criticality measure is used to consider uncertainties by collision probabilities as well as technical accident severities. As result, a smooth transition between preventative driving, collision avoidance, and collision mitigation including impact point localization is enabled and shown in fleet data analyses, simulations, and real test drives. The feasibility in automated driving is shown with currently available test equipment on the testing ground. Systematic analyses show an improvement of 20-30 % technical accident severity with respect to the underlying scenarios. That means up to one-third less injury probability for the vehicle occupants. In conclusion, predicting the risk preventively has a high chance to increase the road safety and thus to take the “Vision Zero” one step further.:Abstract Acknowledgements Contents Nomenclature 1.1 Background 1.2 Problem statement and research question 1.3 Contribution 2 Fundamentals and relatedWork 2.1 Integral safety 2.1.1 Integral applications 2.1.2 Accident Severity 2.1.2.1 Severity measures 2.1.2.2 Severity data bases 2.1.2.3 Severity estimation 2.1.3 Risk assessment in the driving process 2.1.3.1 Uncertainty consideration 2.1.3.2 Risk as a measure 2.1.3.3 Criticality measures in automated driving functions 2.2 Operational motion planning 2.2.1 Performance of a driving function 2.2.1.1 Terms related to scenarios 2.2.1.2 Evaluation and approval of an automated driving function 2.2.2 Driving function architecture 2.2.2.1 Architecture 2.2.2.2 Planner 2.2.2.3 Reference planner 2.2.3 Ethical issues 3 Risk assessment 3.1 Environment model 3.2 Risk as expected value 3.3 Collision probability and most probable collision configuration 4 Accident severity prediction 4.1 Mathematical preliminaries 4.1.1 Methodical approach 4.1.2 Output definition for pedestrian collisions 4.1.3 Output definition for vehicle collisions 4.2 Prediction models 4.2.1 Eccentric impact model 4.2.2 Centric impact model 4.2.3 Multi-body system 4.2.4 Feedforward neural network 4.2.5 Random forest regression 4.3 Parameterisation 4.3.1 Reference database 4.3.2 Training strategy 4.3.3 Model evaluation 5 Risk based motion planning 5.1 Ego vehicle dynamic 5.2 Reward function 5.3 Tuning of the driving function 5.3.1 Tuning strategy 5.3.2 Tuning scenarios 5.3.3 Tuning results 6 Evaluation of the risk based driving function 6.1 Evaluation strategy 6.2 Evaluation scenarios 6.3 Test setup and simulation environment 6.4 Subsequent risk assessment of fleet data 6.4.1 GIDAS accident database 6.4.2 Fleet data Hamburg 6.5 Uncertainty-adaptive driving 6.6 Mitigation application 6.6.1 Real test drives on proving ground 6.6.2 Driving performance in simulation 7 Conclusion and Prospects References List of Tables List of Figures A Extension to the tuning process

Page generated in 0.0975 seconds