Spelling suggestions: "subject:"accumulateurs Li-ion"" "subject:"accumulated Li-ion""
1 |
Etude multi-échelle des mécanismes de (dé)lithiation et de dégradation d'électrodes à base de LiFePO¤ et silicium pour accumulateurs Li-ion / Multi-scale study of (de)lithiation and degradation mechanisms in LiFePO4 and silicon-based electrodes for Li-ion batteriesRobert, Donatien 29 November 2013 (has links)
Ces travaux ont permis d'approfondir les mécanismes de (dé)lithiation et de vieillissement dans des électrodes à base de silicium et de LiFePO4 pour accumulateurs Li-ion à partir d'observations multi-échelles. Des cartographies de phases, autant à l'échelle de la particule qu'à l'échelle de l'électrode, ont été menées par microscopie électronique mettant en évidence de fortes hétérogénéités. Pour le silicium, la mise en place de cartographie unique par STEM/EELS, s'appuyant sur une base de données des pertes faibles d'alliages sensibles à l'air et au faisceau d'électrons, a permis de comprendre les mécanismes de lithiation à l'échelle du nanomètre. L'étude de la première lithiation a montré des différences de mécanismes de réaction avec le lithium suivant deux facteurs : la taille des particules et les défauts au sein de celles-ci. Il a été observé une composition d'alliage LixSi plus faible pour les nanoparticules que pour les microparticules. Les défauts dus notamment au broyage constituent des sites préférentiels de lithiation. En vieillissement, les nanoparticules subissent de profonds changements structuraux et morphologiques, passant d'un état sphérique cristallin (50 nm) à un réseau de fils amorphe (5-10 nm d'épaisseur) contenu dans une matrice de SEI. Pour le LiFePO4, il a été clairement montré, par la combinaison de plusieurs techniques de microscopies électroniques (diffraction des électrons en précession, EFSD : Electron Forward Scattering Diffraction, EFTEM), que les particules de taille nanométrique (100-200 nm) étaient soit entièrement lithiées soit entièrement délithiées à l'équilibre thermodynamique. De fortes hétérogénéités ont été observées dans les électrodes fines comme dans les électrodes épaisses. A l'échelle des particules, l'analyse statistique de plus de 64000 particules a montré que les plus petites particules se délithient en premier. A l'échelle de l'agglomérat, les cartographies de phases ont révélé un mécanisme « cœur-coquille » : la réaction débute de la surface vers le centre des agglomérats. A l'échelle de l'électrode, le front de propagation de phase se déplace suivant des chemins préférentiels de plus grandes porosités de la surface de l'électrode vers le collecteur de courant. La conductivité ionique au sein de nos électrodes est le facteur limitant. / This work aimed at better understanding the (de)lithiation and aging mechanisms in LiFePO4 and silicon-based electrodes for Li-ion batteries from multiscale investigations. Phase mapping was performed by electron microscopy at the particle scale and at the electrode scale. This highlights some strong heterogeneities. The silicon study has shown some different lithium reaction mechanisms following two effects: particle size and crystalline defects. A smaller lithium amount in LixSi alloy was highlighted for the nanoparticles rather than for the microparticles. The defects mainly due to milling are preferential sites for the lithiation. In aging, the nanoparticles have undergone structural and morphological changes. The pristine crystalline spherical shape (50 nm) was transformed into an amorphous wire network (5-10 nm of thickness) contained in a SEI matrix. Thanks to a combination of electron microscopy techniques (precession electron diffraction, Electron Forward Scattering Diffraction, EFTEM), it was clearly shown that the LiFePO4 particles (100-200 nm) are either fully lithiated or fully delithiated at the thermodynamic equilibrium. Strong heterogeneities were observed in the thin and thick electrodes. At the nanoscale, the statistical analysis of 64000 particles unambiguously shows that the small particles delithiate in first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates, from the surface to the center of these agglomerates. At the electrode scale, the phase front would move following preferential paths into the higher porosity from the surface in contact with electrolyte toward the current collector. The electrode ionic conductivity is the limiting parameter.
|
2 |
Impact de la formulation d'électrolytes sur les performances d'une électrode négative nanocomposite silicium-étain pour batteries Li-ion / Impact of the electrolyte formulation on the performance of a silicon-tin nanocomposite negative electrode for lithium-ion batteriesSayah, Simon 14 December 2017 (has links)
Ce projet de thèse porte sur la recherche de nouveaux électrolytes et additifs dans le but d’améliorer la cyclabilité d’une électrode négative composite de formule Si0.32Ni0.14Sn0.17Al0.04C0.35 et d’obtenir une interface électrode|électrolyte stable. En effet, comme la plupart des matériaux à base de silicium, ce composite de grande capacité (plus de 600 mA.h.g-1) souffre actuellement d’une faible durée de vie provenant essentiellement des expansions volumiques qu’il subit lors de sa lithiation et de sa SEI défaillante. Deux types d'électrolytes ont été évalués : (i) un mélange de carbonates d’alkyles EC/PC/3DMC auquel a été ajouté un sel de lithium (LiPF6, LiTFSI, LiFSI ou LiDFOB) ainsi que des additifs aidant à la formation de la SEI tels que le carbonate de vinylène (VC) ou le carbonate de fluoroéthylène (FEC), (ii) des liquides ioniques (LI) contenant un cation ammonium quaternaire (N1114+), imidazolium (EMI+) ou pyrrolidinium (PYR+), associé à un anion à charge délocalisée comme le bis(trifluorométhanesulfonyl)amidure (TFSI-) ou le bis(fluorosulfonyl)amidure (FSI-). L’analyse du diagramme d’ionicité de Walden a permis de mettre en évidence la bonne dissociation de LiFSI et LiPF6 dans EC/PC/3DMC assurant ainsi des conductivités ioniques supérieures à 12 mS.cm-1. Bien que possédant des propriétés de transport a priori moins intéressantes dans ce mélange ternaire que les autres sels, LiDFOB forme en réduction une SEI permettant au composite de fournir les meilleures performances en cyclage sans additif avec 560 mA.h.g-1 pour un rendement coulombique de 98,4%. L’ajout d’additif est cependant nécessaire pour atteindre les objectifs fixés par le projet en termes de rendement coulombique (>99,5%). Dans ce cas, l’ajout de 2%VC+10%FEC au mélange ternaire est le plus intéressant avec LiPF6. Le matériau fourni ainsi des capacités de 550 mA.h.g-1 durant une centaine de cycles à un régime de C/5 avec un rendement coulombique de 99,8%. En milieu LI, les performances optimales sont atteintes avec le [EMI][FSI] et 1 mol.L-1 de LiFSI. Le composite atteint alors une capacité de 635 mA.h.g-1 durant 100 cycles à un régime de C/5 avec un rendement coulombique très proche de 100%, tout en s’affranchissant de l’ajout d’additifs. Malgré une viscosité bien plus élevée que celles des mélanges de carbonates d’alkyles, cette formulation permet de générer une SEI plus stable dont la nature, principalement minérale, est issue majoritairement des produits de réduction de FSI-. / This study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-.
|
3 |
Recherches d'optimums d'énergie pour charge/décharge d'une batterie à technologie avancée dédiée à des applications photovoltaïquesReynaud, Jean-François 04 January 2011 (has links) (PDF)
La présence d'une fonction de stockage avec des sources d'énergie intermittentes permet d'obtenir une meilleure adéquation entre la consommation et la production d'énergie. Aujourd'hui, le stockage d'énergie est le plus souvent réalisé avec des batteries conventionnelles, principalement au plomb-acide, pour des raisons de coût, de fiabilité et de disponibilité industrielle. Cependant, la durée de vie des éléments de stockage actuels, l'impact sur l'environnement et le rendement trop faible entrainent la recherche d'autres moyens de stockage ayant des durées de vie compatibles avec les applications et présentant des fonctions plus flexibles. La technologie lithium parait être aujourd'hui un bon compromis si elle est associée à une électronique de précision assurant diverses fonctions. Cette thèse porte sur l'optimisation de moyens de stockages lithium-ion utilisés dans les énergies renouvelables et le développement de l'électronique associée. La validation de ces travaux a été faite à travers des systèmes de conversion photovoltaïques. Le rendement de conversion de l'ensemble a particulièrement été étudié en tenant compte de différents profils de charge et de décharge, du vieillissement et des sécurités des batteries ainsi que des derniers développements technologiques de batterie. Pour valider les algorithmes de gestion et qualifier les chaînes de conversion, un banc de mesure spécifique a été développé.
|
Page generated in 0.0524 seconds