• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 7
  • 6
  • Tagged with
  • 53
  • 23
  • 23
  • 16
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude structurale et électrochimique de films de LiCoO2 préparés par pulvérisation cathodique : application aux microaccumulateurs tout solide

Tintignac, Sophie 16 December 2008 (has links) (PDF)
Au cours de ce travail de thèse, nous avons mis au point un procédé d'élaboration reproductible de films minces de LiCoO2 par pulvérisation cathodique radio fréquence. L'étude paramétrique nous a permis de déterminer les conditions de dépôt optimales ainsi que les conditions de traitement thermique post-dépôt les plus adaptées afin d'aboutir aux meilleures propriétés électrochimiques pour ces électrodes. Une fois optimisés, les films minces ont été étudiés en électrolyte liquide et nous avons notamment évalué l'influence sur les performances électrochimiques de l'épaisseur du film, de la densité de courant employée, ainsi que des bornes de potentiel utilisées. Nous avons mis en évidence un excellent comportement des films sur une large gamme d'épaisseurs et régimes. La capacité obtenue pour un film de 3,6 µm à 10 µA.cm-2 est de 240 µAh.cm-2. Une étude par microspectrométrie Raman permet de montrer que les changements structuraux induits par les processus électrochimiques sont mineurs et limités à une élongation réversible des liaisons Co-O dans l'axe d'empilement. L'intégration d'un film de 450 nm d'épaisseur dans un microaccumulateur tout solide (LiCoO2/LiPON/Li) a confirmé les excellents résultats obtenus en électrolyte liquide avec une capacité de 25 µAh.cm-2. Là encore, le comportement du film reste inchangé pour des densités de courant élevées allant jusqu'à 800 µA.cm-2. Le cyclage du microaccumulateur à 10 µA.cm-2 a été maintenu pendant plus de 800 cycles sans perte notable de capacité. Pour la première fois on démontre que des films minces de LiCoO2 élaborés par pulvérisation cathodique et recuits à 500°C peuvent être utilisés dans un microaccumulateur au lithium tout solide avec des performances proches de la théorie
22

Etude de l'insertion du lithium dans des électrodes à base de silicium. Apports de l'analyse de surface (XPS, AES, ToF-SIMS) / Investigation of lithium insertion mechanisms in silicon based anodes by using surface analysis techniques (XPS, AES, ToF-SIMS)

Bordes, Arnaud 17 November 2016 (has links)
Le silicium est un matériau étudié depuis plusieurs années comme une sérieuse alternative au graphite dans les batteries Li-ion. Ce travail de thèse vise à développer des approches alternatives et complémentaires à celles déjà existantes afin de mieux comprendre les mécanismes de lithiation et de dégradation. L'analyse croisée entre plusieurs techniques, principalement FIB-ToF-SIMS, Auger, XPS et FIB-MEB, point central de l'étude, nécessite la mise en place de protocoles spécifiques prenant en compte la forte réactivité des échantillons lithiés. En premier lieu, un couplage entre ToF-SIMS et XPS sur des couches minces de silicium, permet de mettre en évidence la présence d'une phase riche en lithium ségrégée à l'interface entre la couche de matériau actif et le collecteur de courant en cuivre. Un mécanisme particulier de lithiation du silicium, basé sur l'existence de chemins de diffusion rapide pour le lithium, est suggéré. La réalisation de coupes FIB effectuées in situ dans la chambre d'analyse du ToF-SIMS sur des électrodes à base de poudre micrométrique de Si permet ensuite de proposer un mécanisme de lithiation analogue à celui mis en évidence précédemment. En outre, la présence de grains déconnectés du réseau percolant de l'électrode au cours du cyclage et piégeant le lithium est mise en évidence et contribue à la défaillance rapide de la batterie. Enfin, la méthodologie développée est appliquée à l'étude d'électrodes composées de Si nanométrique et de composite Si/C. Elle participe à l'établissement d'un modèle de croissance de SEI à la surface de grains de silicium nanométriques et permet d'identifier les raisons de la défaillance de ces électrodes. / Silicon is a serious option to replace graphite in anodes for Li-ion batteries since it offers a specific capacity almost ten times higher. However, silicon anodes suffer from a drastic capacity fading, making it unusable after a few cycles. The work presented here aims at the development of new alternative and complementary approaches to those currently used, in order to better understand lithiation and degradation mechanisms. These methods are based on cross-analysis between several surface characterizations techniques, including FIB-ToF-SIMS, AES, XPS and FIB-MEB, which require specific procedures to deal with the extreme sensitivity of lithiated materials. Coupling XPS and ToF-SIMS on silicon thin films revealed the presence of a Li-rich phase segregated at the interface between silicon and Cu current collector. A mechanism based on fast diffusion paths for lithium is suggested. In situ FIB milling, performed in the analysis chamber of the ToF-SIMS on anodes using micrometer-sized silicon particles, revealed a similar mechanism involving fast diffusion paths for lithium. Additional TEM observations suggest that, in the case of micrometer-sized particles, these paths result from sub-grain boundaries. Additionally, the presence of Li trapped in Si particles which are disconnected from the conductive grid along cycling is shown, contributing to the poor battery lifespan. Finally, the developed method has been applied to electrodes based on nanometer-sized Si particles and Si/C composite. Despite of the small size of the involved particles, it is possible to get information about SEI growth on the surface of nano-sized silicon particles and to identify causes of failure.
23

Développement d’un électrolyte à base de liquide ionique pour accumulateur au Lithium / Development of an electrolyte based on ionic liquid for lithium ion batteries

Srour, Hassan 02 October 2013 (has links)
Dans les accumulateurs au lithium, l'électrolyte joue un rôle important car ses propriétés physicochimiques et électrochimiques conditionnent l'efficacité du générateur électrochimique. Actuellement, les électrolytes organiques utilisés induisent des difficultés pour la mise en oeuvre et l'utilisation de la batterie (composants volatils et inflammables). De nouveaux électrolytes à base de sels fondus à température ambiante, dit liquides ioniques, sont des candidats potentiels plus sécuritaires (faible inflammabilité, basse pression de vapeur saturante, point éclair élevé), qui présentent en outre une large fenêtre électrochimique. Dans un premier temps, le travail de thèse a été de concevoir de nouvelles voies de synthèses plus économes, tenant compte des exigences environnementales (limitation des déchets, pas de solvant) et proposant des liquides ioniques de haute pureté >99.5% compatibles avec une production industrielle. De nouveaux liquides ioniques dérivés du cation imidazolium ont alors été conçus afin de moduler leurs propriétés physicochimiques et optimiser leurs performances dans les batteries. Ils ont été évalués dans diverses technologies de batteries (Graphite/LiFePO4) et (Li4Ti5O12/LiFePO4) dans différentes conditions expérimentales, à 298 K et 333 K, cette dernière température étant proscrite pour les batteries conventionnelles. Ce travail de thèse a permis d'identifier les modifications chimiques pour conduire aux électrolytes les plus prometteurs et à mis en exergue l'importance de l'étude de la compréhension des phénomènes d'interphase liquides ioniques/ électrodes / In lithium ion batteries, the electrolyte plays an important role because its physicochemical and electrochemical properties determine their efficiency. Currently, the used organic electrolytes induce difficulties in the manufacturing and the use of the battery (volatile and flammable components). New electrolytes based on molten salts at room temperature, called ionic liquids, are safer potential candidates (low flammability, low vapor pressure, high flash point) with a wide electrochemical window. The first stage of this PhD was to design new and more efficient synthetic routes, taking into account the environmental requirements (waste minimization, no solvent) and allowing the elaboration of ionic liquids with high purity> 99.5%, compatible with an industrial production. New ionic liquids derived from imidazolium cation were then designed in order to modulate their physicochemical properties, and to optimize their performance in batteries. They were evaluated in various battery technologies (Graphite/LiFePO4) and (Li4Ti5O12/LiFePO4) under different experimental conditions, 298 K and 333 K, when the conventional lithium ion batteries (organic electrolyte) are used only under 313 K. This PhD work has identified the chemical modifications to yield the most promising electrolytes, and highlighted the importance of the study on the understanding of ionic liquid/electrode interphase phenomena
24

Développement de batteries tout solide sodium ion à base d’électrolyte en verre de chalcogénures / Development of all solid state sodium ion batteries based on chalcogenide glass electrolyte

Castro, Alexandre 19 December 2018 (has links)
L'évolution des consommations énergétiques au cours des dernières décennies entraîne des modifications majeures dans la conception des systèmes électriques autonomes à fournir, que ce soit pour des applications électriques ou électroniques. La nécessité présente de réaliser des générateurs capables de délivrer l'énergie suffisante, avec une garantie de sûreté maximale, impose à la recherche l'exploration de nouvelles voies de stockage. Les voies actuelles par accumulateurs au lithium tendent à montrer leurs limites, tant stratégiques qu'environnementales. Dans ce cadre, la construction de nouveaux systèmes électrochimiques mettant en œuvre le sodium ouvre une possibilité de réalisation d'accumulateurs sans lithium. Le besoin de batteries toujours plus performantes oblige à des conceptions innovantes, abandonnant la voie liquide au profit de systèmes tout solide plus sécuritaires. De plus, la miniaturisation de l'électronique conduit à revoir le dimensionnement des batteries, vers des batteries de type micro, pour lesquelles l'intérêt d'un empilement tout solide n'est plus à démontrer. Aujourd'hui, des verres de chalcogénures au soufre permettent l'accès à des conductivités ioniques qui laissent entrevoir la possibilité d'une réalisation de batteries tout solide, à la fois sous forme de micro batteries ou de batteries massives. Un effort de recherche a été porté à la formulation de ces verres de chalcogénures afin d'obtenir des conductivités ioniques maximales et des propriétés autorisant leur utilisation comme électrolyte. La modification de ces verres met alors en lumière l'intérêt des différents éléments les composant. L'étude de la mise en forme de l'électrolyte par dépôts de type couches minces (obtenues par Radio Fréquence Magnétron Sputering, RFMS) prouve la faisabilité de ces micro batteries tout solide au sodium. Par la suite, la réalisation de batteries massives tout solide a demandé la synthèse de deux matériaux de cathode (NaCrO2 et Na[Ni0,25Fe0,5Mn0,25]O2) et de deux matériaux d'anode (Na15Sn4 et Na) permettant ainsi la mise en œuvre de quatre empilements électrochimiques, tous caractérisés comme accumulateurs. Enfin, l'amélioration des interfaces grâce à un gel-polymère a permis de perfectionner les propriétés des assemblages avec notamment une augmentation des vitesses de charge/décharge et une mobilisation accrue des matériaux actifs de cathode. / The evolution of energy consumption in recent decades has led to major changes in the design of autonomous electrical systems dedicated to either electrical or electronic applications. The present demand to build generators capable of delivering sufficient energy, with a guarantee of maximum safety, requires to explore new storage routes. The current lithium battery routes tend to show their limits, both strategic and environmental. In this context, the construction of new electrochemical systems implementing sodium opens the way of the lithium-free accumulators production. The need for ever more efficient batteries requires innovative designs, giving up the liquid path in favor of stronger solid systems. In addition, the miniaturization of electronics leads to a review of the size of the batteries, to micro-type batteries, for which the interest of a solid stack is no longer to demonstrate. Today, sulfur chalcogenide glasses allow access to ionic conductivities that suggest the possibility of a realization of all solid batteries, both in the form of micro batteries or massive batteries. A research effort has been made to formulate these chalcogenide glasses in order to obtain a maximum of ionic conductivity and properties allowing their use as electrolytes. The composition of these glasses highlights the interest of the different elements for such properties. The study of the electrolyte shaping by thin-film deposition (obtained by Radio Frequency Magnetron Sputering, RFMS) proves the feasibility of these all-solid sodium micro-batteries. Subsequently, the realization of massive all solid batteries required the synthesis of two cathode materials (NaCrO2 and Na [Ni0.25Fe0.5Mn0.25]O2) and two anode materials (Na15Sn4 and Na) thus allowing the implementation of four electrochemical stacks, all characterized as accumulators. Finally, the improvement of the interfaces thanks to a gel-polymer made it possible to improve the properties of the assemblies with notably an increase of the speeds of charge / discharge and an enhanced mobilization of the cathode active materials.
25

Élaboration et caractérisation d'alliages hydrurables de type ABx (A=Pr, Nd, La, Mg ; B=Ni; x=3, 3.5, 3.8, 5) en vue de leur utilisation comme matière active pour électrode négative d'accumulateurs NiMH / Elaboration and characterization of ABx (A=Pr, Nd, La, Mg ; B=Ni; x=3, 3.5, 3.8, 5)hydride forming alloys to be used as active material for negative electrode in NiMH battery

Lemort, Lucille 08 December 2010 (has links)
Une alternative aux énergies fossiles comme vecteur énergétique peut se présenter sous la forme de l'hydrogène et de son stockage. Les hydrures métalliques sont une des options possibles pour le stockage de l'hydrogène. Les accumulateurs alcalins Ni-MH présentent une technologie intéressante pour les applications portables et pour le développement des véhicules électriques hybrides (HEV). Afin de répondre à la demande d'augmentation de la capacité massique des accumulateurs, de nouveaux composés intermétalliques hydrurables de type ABx (3etlt;xetlt;5) sont étudiés. Le groupe A est constitué de terres rares partiellement substituées par du magnésium, le groupe B contient du Ni. Après un état de l'art sur ce type de composés, le travail de cette thèse consiste à rechercher les conditions d'élaboration des composés A1-yMgyNix (3etlt;xetlt;5, 0etlt;yetlt;1, A= La, Pr, Nd) ainsi que de les caractériser d'un point de vue structural et physico-chimique (DRX, microsonde électronique, ICP) et de déterminer leurs propriétés vis-à-vis de l'hydrogène (réac tion solide-gaz et électrochimique). Durant ce travail de nouvelles phases ont été découvertes et caractérisées : les phases (A1-yMgy)5Ni19 / One solution to overcome the diminution of fossil fuel resources is to use hydrogen as an energy vector. The main issue concerning hydrogen systems is its storage. NiMH batteries are promising candidates for portable devices and hybrid vehicles (HEV) applications. In order to answer to growing need for higher capacity, new compounds such as ABx (3etlt;xetlt;5) are under investigation. A is a rare earth element that can be partially substituted by Mg. B is Ni. After careful examination of the state of the art on this family of compound, the synthesis routes to prepare A1-yMgyNix (3etlt;xetlt;5, 0etlt;yetlt;1, A= La, Pr, Nd) alloys were investigated and optimized during this PhD work. The structure and chemical composition of the samples were determined using X-ray diffraction, microprobe analysis and ICP. The hydrogen sorption properties (solid-gas and electrochemical reactions) were studied as well. During this work the (A1-yMgy)5Ni19 new phase s have been reported and characterized
26

Élaboration et caractérisation d'alliages hydrurables de type ABx (A=La, Mg ; B=Ni ET x=3 à 4) en vue de leur utilisation comme matière active pour électrode négative d'accumulateur Ni-MH / Elaboration an characterization of ABx (A=La, Mg ; B=Ni ET x=3 to 4) hybride-forming alloys to be used as active materials for negative electrode of Ni-MH battery

Petit Férey, Marie Amélie 30 January 2008 (has links)
Les applications portables et stationnaires des accumulateurs Ni-MH nécessitent sans cesse des autonomies de plus en plus importantes. Cet accroissement d’autonomie peut être obtenu en développant de nouveaux composés intermétalliques hydrurables de type ABx (3<x<4) de plus grande capacité massique. Le groupe A de ces composés est constitué de La partiellement substitué par du Mg, qui est beaucoup plus léger et diminue la masse molaire de l’alliage, et le groupe B contenant du Ni partiellement substitué par d’autres éléments de transition. Après une étude bibliographique approfondie, le travail de cette thèse consiste à rechercher tout d’abord les conditions optimales d’élaboration d’intermétalliques de composition La1-yMgyNix (0<y<1 ; 3<x<4). Puis ces composés sont caractérisés du point de vue structural et physico chimique (diffraction des rayons X et microsonde électronique), et leurs propriétés vis-à-vis de l’hydrogène (réaction solide-gaz et électrochimique) sont étudiées / Mobile and stationary applications for Ni-MH batteries require continuously more and more energy density. This increased autonomy can be obtained by developing new hydride-forming compounds of ABx-type (3<x<4) with larger weight capacities. The A element of these compounds is constituted of La partially substituted by light Mg, allowing a reduced molar weight. The B element is made of Ni that can be partially substituted by other transition metals. After an extensive bibliographic study, this thesis presents the research work to find optimum conditions for the synthesis of Mg-containing intermetallic compounds La1-yMgyNix (0<y<1; 3<x<4). These compounds are then characterized from the structural and chemical point of views (X-ray diffraction and microprobe analysis) and their hydrogen-related properties are studied and compared (solid-gas and electrochemical reactions)
27

Étude structurale et électrochimique de films de LiCoO2 préparés par pulvérisation cathodique : application aux microaccumulateurs tout solide

Tintignac, Sophie 16 December 2008 (has links)
Au cours de ce travail de thèse, nous avons mis au point un procédé d'élaboration reproductible de films minces de LiCoO2 par pulvérisation cathodique radio fréquence. L'étude paramétrique nous a permis de déterminer les conditions de dépôt optimales ainsi que les conditions de traitement thermique post-dépôt les plus adaptées afin d'aboutir aux meilleures propriétés électrochimiques pour ces électrodes. Une fois optimisés, les films minces ont été étudiés en électrolyte liquide et nous avons notamment évalué l'influence sur les performances électrochimiques de l'épaisseur du film, de la densité de courant employée, ainsi que des bornes de potentiel utilisées. Nous avons mis en évidence un excellent comportement des films sur une large gamme d'épaisseurs et régimes. La capacité obtenue pour un film de 3,6 µm à 10 µA.cm-2 est de 240 µAh.cm-2. Une étude par microspectrométrie Raman permet de montrer que les changements structuraux induits par les processus électrochimiques sont mineurs et limités à une élongation réversible des liaisons Co-O dans l'axe d'empilement. L'intégration d'un film de 450 nm d'épaisseur dans un microaccumulateur tout solide (LiCoO2/LiPON/Li) a confirmé les excellents résultats obtenus en électrolyte liquide avec une capacité de 25 µAh.cm-2. Là encore, le comportement du film reste inchangé pour des densités de courant élevées allant jusqu'à 800 µA.cm-2. Le cyclage du microaccumulateur à 10 µA.cm-2 a été maintenu pendant plus de 800 cycles sans perte notable de capacité. Pour la première fois on démontre que des films minces de LiCoO2 élaborés par pulvérisation cathodique et recuits à 500°C peuvent être utilisés dans un microaccumulateur au lithium tout solide avec des performances proches de la théorie / This PhD-work has led to a reproducible elaboration process of LiCoO2 thin films by radio frequency sputtering. We determined the optimum deposition parameters and post-annealing conditions that lead to the best electrochemical properties for the thin electrodes. These optimized films have then been characterized in liquid electrolyte. In particular, the effect of the film thickness, the current rate and the oxidation voltage limit on the electrochemical performances have been studied. The films demonstrate an excellent behaviour for a large range of thicknesses and current rates. The galvanostatic cycling at 10 µA.cm-2 of a 3,6 µm thick film results in a specific capacity of 240 µAh.cm-2. A Raman spectrometry study has shown that structural changes induced by lithium insertion/deinsertion were weak and limited to a reversible stretching of the Co-O bondings along the stacking axis. The integration of a 450 nm thick film in an all-solid-state microbattery (LiCoO2/LiPON/Li) confirmed the excellent results obtained in liquid electrolyte with a capacity of 25 µAh.cm-2. Once again, the thin film behaviour is unchanged for current rates up to 800 µA.cm-2. The microbattery has been cycled at 10 µA.cm-2 for more than 800 cycles without significant capacity losses. This is the first time that 500°C annealed LiCoO2 films elaborated by radio frequency sputtering are successfully integrated in an all-solid-state lithium microbattery with performances close to the theoretical ones
28

Mechanical alloying Ti-Ni based metallic compounds as negative electrode materials for Ni-MH battery / Mécanosynthèse des alliages à base NiTi utilisés comme électrodes négatives pour des accumulateurs Nickel-Métal-Hydrure

Li, Xianda 09 February 2015 (has links)
Les accumulateurs Ni-MH (Nickel-Métal-Hydrure) sont un sujet prometteur et largement étudié dans les recherches d’une énergie propre et durable. Trouver le matériau idéal pour l'électrode négative à haute densité volumétrique et gravimétrique est la clé pour l’application de cette technologie. Les hydrures métalliques à base de Ti-Ni ont des propriétés équilibrées entre la capacité d’hydrogène et les performances électrochimiques.L’objectif de cette thèse est d’étudier les effets de substitutions/additions d’éléments et de la mécanosynthèse sur la structure et les propriétés d’hydrogène des alliages Ti-Ni. Dans cette étude, une série d’alliages à base de Ti-Ni avec des substitutions/additions de Mg ou de Zr ont été systématiquement étudiés.Les alliages (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi ont été synthétisés par mécanosynthèse à partir de poudres élémentaires. Dans un premier temps, l’influence du temps de broyage et les effets de substitutions/additions sur les microstructures ont été caractérisés par des techniques telles que la DRX, le MEB et le MET. Dans un second temps, les propriétés d’hydrogénation des différents alliages ont été mesurées par des réactions solid-gaz et par cyclage électrochimique.La théorie de la fonctionnelle de la densité (DFT) en utilisant le programme CASTEP a permis de calculer les enthalpies de formation afin de comparer la stabilité thermodynamique des alliages obtenus. Dans ces travaux de recherche, nous avons identifié les priorités d’alliage des ternaires Ni-Ti-Mg et Ti-Ni-Zr dans des conditions de broyage. La transformation structurale du Ti en phase CFC, induite par l’introduction d’éléments étrangers, a été mise en évidence.Les courbes PCI (Pression-Composition-Isothermes) et les capacités de décharge en fonction du nombre de cycles indiquent les propriétés d’hydrogène des alliages obtenus, y compris TiNi, Ti2Ni (amorphe), Ti-Mg et Ti-Zr. / Ni-MH (Nickel-Metal-Hydride) batteries have been a promising and extensively studied topic among clean and sustainable energy researches. Finding the ideal material for the negative electrode with high volumetric and gravimetric densities is the key to apply this technology on broader applications. Metal hydrides based on Ti-Ni have balanced properties between hydrogen capacity and electrochemical performances in cycling.The objective of this thesis is to study the effects of element substitution/doping and mechanical alloying on the structural and hydrogen properties of Ti-Ni alloys. In this study, a series of Ti-Ni based systems with Mg or Zr doping/substitution have been systematically investigated.The metallic compounds (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi were synthesized by mechanically alloying from elemental powders.The milling time and effects of Mg, Zr substitution/doping were studied firstly in respect of their microstructures, using characterization techniques including XRD, SEM, TEM (EDX support), followed by the hydrogen properties measurements of the samples by hydrogen solid-gas reaction and electrochemical cycling.A first principle calculation tool based on DFT (Density Functional Theory) was carried out to further investigate the enthalpy of formation in order to compare the thermodynamical stability of the obtained compounds. In the study, we have found the alloying priorities in the ternary alloys Ti-Ni-Mg and Ti-Ni-Zr under milling conditions.A structure transformation of Ti to FCC induced by foreign elements is reported and investigated. Enthalpy of formation per atom of the compounds were obtained by DFT calculations, which helped interpreting the experimental results. PCI (Pressure Composition Isotherms) curves and discharge capacities as the function of cycling numbers revealed the hydrogen properties of the obtained compounds, including TiNi, Ti2Ni (amorphous), Ti-Mg and Ti-Zr.
29

Synthesis, characterization and electrochemical hydrogen storage properties of mechanicalyl alloyed Ti-Mg-Ni : application as negative electrode for Ni-MH battery / Elaboration par mécanosynthèse et caractérisation des propriétés de stockage électrochimique d'hydrogène d'alliages Ti-Mg-Ni : application en vue de leur utilisation comme électrode négative d'accumulateur Ni-MH.

Zhang, Zhao 07 April 2017 (has links)
Le stockage de l'hydrogène est l'un des plus grands problèmes techniques qui restreignent l'application pratique de l'hydrogène. Les hydrures métalliques sont considérés comme la solution principale à ce problème puisqu'ils peuvent absorber et désorber de façon réversible une grande quantité d'hydrogène sous une température et une pression modérées. Par ailleurs, les hydrures métalliques utilisés comme électrodes négatives dans les accumulateurs Nickel-Métal Hydrure (Ni-MH) sont également les composants clés des performances de ces derniers.Dans cette thèse, les alliages métalliques TiMgNix, MgTi1-xNix et TiMg1-xNix ont été synthétisés par broyage mécanique à partir de poudres élémentaires. La microstructure et les transformations de phase des échantillons préparés ont été caractérisées par DRX, MEB et MET (avec microanalyse EDS).Les propriétés d'hydrogénation ont été mesurées par réaction d'hydrogène solide-gaz et par des essais électrochimiques. Un diagramme de composition-capacité 3D a été établi sur la base du diagramme de phase ternaire Ti-Mg-Ni. Un procédé de broyage en deux étapes a été mis en œuvre pour améliorer les performances électrochimiques des alliages Ti-Mg-Ni.De plus, les alliages TiNi1-xCux ont été synthétisés par broyage mécanique et ensuite recuits. L 'influence de la substitution du nickel par le cuivre sur la structure et les propriétés électrochimiques est étudiée en utilisant une double approche: expérimentale et par simulation.Les résultats obtenus par la théorie de la fonctionnelle de la densité (DFT) en utilisant le programme CASTEP montrent que l'enthalpie de formation et l'énergie d'adsorption de l¿hydrogène de la phase pseudo-binaire Ti(Ni, Cu) sont en bon accord avec les résultats expérimentaux. / The storage of hydrogen is one of the biggest technical problem that restrict the practical application of hydrogen. Metal hydrides are mainly regarded as the solution facing to this issue since it can reversibly absorb and desorb big amount of hydrogen under moderate temperature and pressure. Meanwhile, metal hydrides used as the negative electrodes of Ni-MH batteries are also the key components to the battery performance.In this thesis, the metallic composite TiMgNix, MgTi1-xNix and TiMg1-xNix were synthesized by mechanical alloying from elemental powder. The microstructure and phase transformation of prepared samples were characterized by XRD, SEM, TEM (EDS support). The hydrogenation properties were measured by hydrogen solid-gas reaction and electrochemical tests. Based on the Ti-Mg-Ni ternary phase diagram, a 3D composition-capacity diagram have been established. Two-step mill process was proposed for meliorating the electrochemical performance of Ti-Mg-Ni alloys.Additionally, TiNi1-xCux alloys had been synthesized by mechanical alloying and subsequent annealing and studied using experimental and computational approaches. The influence of Cu substitution for Ni on the phase structure and electrochemical properties are investigated. The first principle calculation was carried out to study the formation enthalpy and hydrogen adsorption energy of pseudo-binary Ti(Ni, Cu) phase. The computational results are in good agreement with experimental results.
30

Élaboration par mécano-synthèse d'alliages à base Ti-Fe : caractérisation de leurs propriétés de stockage électrochimique d'hydrogène / Elaboration of Ti-Fe based alloys using ball milling : characterization of their electrochemical hydrogen storage properties

Hosni, Bilel 17 July 2018 (has links)
L’hydrogène est la solution potentielle pour réussir la transition énergétique d’un système actuel basé en grande partie sur les combustibles fossiles vers un système non émetteur de gaz toxiques et respectueux de l’environnement. Cependant, le stockage de l’hydrogène est un grand défi qui freine son application pratique dans les différents domaines. Les hydrures métalliques permettent de stocker une grande quantité d’hydrogène de façon réversible dans de bonnes conditions (Température, pression, sécurité…) comparée aux autres modes de stockage (gazeux et liquide). En plus, ces mêmes matériaux sont utilisés comme électrode négative dans les batteries Nickel-Métal Hydrure.Dans la première partie de cette thèse, les alliages Ti-Fe ont été synthétisés parmécanosynthèse pour différents temps de broyage et différents rapports massiquesbilles/poudre. Afin d’optimiser les paramètres d’élaboration, ces alliages ont été caractérisés par différentes techniques telles que la diffraction des rayons X, la microscopie électronique à balayage, la chronopotentiométrie, la chronoampérométrie et la voltamétrie cyclique.Dans une seconde partie, les alliages TiFe+4%MWNTs, TiFe0.95-xMx, TiFe0.90M0.10 etTiFe0.90Mn0.05V0.05 (x=0.05, 0.15) (M : Mn ou V) ont été élaborés selon les paramètres optimaux déterminés précédemment. L’influence de l’additif Nanotubes de Carbone à multiparois (MWNTs), de la substitution partielle du Fe par Mn et/ou V et de l’excès de Titane sur les propriétés structurales, morphologiques et électrochimiques telles que l’activation, la capacité de décharge électrochimique, la réversibilité, la tenue au cyclage, le coefficient de diffusion ont ensuite été étudiés. Les propriétés redox des électrodes, le potentiel de Nernst et la densité du courant d’échange, ont été déterminés, en se basant sur la première loi de Sternet le modèle théorique de Bulter -Volmer.Les résultats électrochimiques obtenus montrent que l’alliage TiFe+4 wt.% MWNTs présente les meilleures performances : une activation rapide (au 1er cycle) et une meilleure capacité maximale de décharge (266 mAh g-1) avec une réversibilité qui reste inchangée. / Hydrogen is the potential solution to make a success of the energy transition of a current system basically based on fossil fuels towards a system friendly to environment. However, the storage of hydrogen is a big challenge that hinders its practical application in different areas.. Metal hydrides can store a large amount of hydrogen reversibly under good conditions (temperature, pressure, safety ...) compared to other storage modes (gaseous and liquid). In addition, these same materials are used as negative electrode in Nickel-Metal Hydride batteriesIn the first part of this thesis, Ti-Fe alloys were synthesized using mechanical alloying (MA) under argon atmosphere at room temperature, with different ball to powder weight ratio and at different milling times. In order to determine the optimal parameters of the elaboration the metallic composite were investigated using different techniques such as X-ray diffraction, scanning electron microscopy (EDS support), chronopotentiometry, chronoamperometry and cyclic voltammetry,In the second part, the metallic compounds, TiFe+4%MWNTs, TiFe0.95-xMx, TiFe0.90M0.10 and TiFe0.90Mn0.05V0.05 (x=0.05, 0.15) (M : Mn or V), which are used as the negative electrode material for Ni-MH secondary batteries, were synthesized by mechanical alloying according to optimal parameters, previously determined.The effect of MWNT addition, the Mn and/or V partial substitution for Fe and the excess of titanium on the structural, morphological and electrochemical parameters such as activation, electrochemical discharge capacity, reversibility, cycle life time and hydrogen diffusion coefficient were investigated.The redox properties of the electrodes such as the Nernst potential and the exchange current density were studied based on Stern’s first law and the theoretical model of Bulter-Volmer.The electrochemical properties of studied samples show the best performance for TiFe+4% MWNTs alloy. Indeed, this alloy presents a rapid activation (1st cycle) and a best discharge capacity (266 mAhg-1) with a reversibility remaining unchanged

Page generated in 0.0755 seconds