• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Oxidação de acetol com H2O2 catalisada por Mn-TMTACN em condições brandas

Silva, Thais Mencia Mendes da January 2015 (has links)
Orientador: Prof. Dr. Dalmo Mandelli / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Ciência e Tecnologia/Química, 2015. / O glicerol é o principal subproduto da indústria do biodiesel. Com o aumento na produção deste biocombustível, o valor de mercado do glicerol diminuiu consideravelmente, estimulando o estudo de novas rotas sintéticas para sua transformação em outros produtos de maior valor agregado. O glicerol pode, por exemplo, ser desidratado, originando o acetol, e este transformado em outros compostos como, por exemplo, ácido acético, fórmico, glicólico, láctico, oxálico, pirúvico, ou ainda para metilglioxal. Neste trabalho foi estudada a oxidação de acetol com peróxido de hidrogênio (H2O2) sob condições brandas (25°C e 1 atm), utilizando-se como catalisador o complexo dinuclear de Mn(IV), [L2Mn2O3](PF6)2, L = 1,4,7-trimetil-1,4,7-triazociclononano (Mn-TMTACN), obtendo como produtos ácido acético, ácido fórmico e CO2. Em uma reação típica utilizou-se 0,5 mol.L-1 de substrato, obtendo-se, após 5h, 0,073 mol.L-1 de ácido acético, 0,079 mol.L-1 de ácido fórmico e 0,031 mol.L-1 de CO2. Foram avaliados os efeitos das variações das concentrações de catalisador, peróxido de hidrogênio e substrato no total de produtos e na velocidade inicial da reação. Também foi testado o efeito de co-catalisadores e o ácido oxálico levou aos melhores resultados aumentando-se praticamente dobrando o total de produtos formados e levando a um número de turnover de aproximadamente 3800. / Glycerol is the main by-product of the biodiesel industry. With the increase in production of biofuels, the market value of glycerol decreased considerably, encouraging the study of new synthetic routes for its transformation into other higher value-added products. The glycerol may, for example, be dehydrated yielding the acetol, and this transformed into other compounds such as, for example, acetic acid, formic, glycolic, lactic, oxalic, pyruvic, or to methylglyoxal. In this work we studied the acetol oxidation with hydrogen peroxide (H2O2) under mild conditions (25 °C and 1 atm), using as catalyst complex dinuclear Mn (IV), [L2Mn2O3] (PF6) 2, L = 1,4,7-trimethyl-1,4,7-triazacyclononane (Mn-TMTACN) to give Products such as acetic acid, formic acid and CO2. In a typical reaction used 0,5 mol.L-1 substrate, is obtained after 5h, 0,073 mol.L-1 of acetic acid, 0,079 mol.L-1 of formic acid and 0,031 mol.L-1 CO2. The effects of changes in catalyst concentrations, hydrogen peroxide and substrate totaling products and the initial rate of the reaction. Also tested was the effect of co-catalysts and oxalic acid led to better results by increasing practically doubling the total products formed and leading to a turnover number of about 3800.
12

Acidic-basic properties of catalysts for conversion of biomass

Stosic, Dusan 18 December 2012 (has links) (PDF)
Glycerol and fructose are molecules that are readily available in substantial quantities fromthe biomass. In this work dehydration routes for valorization of these compounds wereinvestigated. Therefore, zirconia and titania based catalysts, and calcium phosphate materialswere prepared and evaluated in the glycerol dehydration in gas phase. Niobia-ceria mixedoxides and mesoporous Nb2O5-MeO2 (M = Ce, Zr, Ti) mixed oxides were prepared andtested in fructose dehydration reaction in aqueous phase. The surface acid-base properties ofthe studied catalysts were correlated to their catalytic performance.
13

Catalytic transformations of glycerol via hydroxyacetone into nitrogen heterocycles of industrial interest

Mazarío Santa-Pau, Jaime 17 January 2022 (has links)
[ES] La presente tesis doctoral aborda el desarrollo de nuevos procesos catalíticos centrados en la valorización del glicerol, subproducto principal en la síntesis de biodiesel. El objetivo principal del trabajo consiste en utilizarlo como fuente de carbono para la producción de heterociclos nitrogenados de interés industrial, en concreto, para la producción de 2-metilpiperazina y 2-metilpirazina. Debido a la baja reactividad del glicerol y las drásticas condiciones de reacción que serían necesarias para llevar a cabo las transformaciones a estos heterociclos, se ha planteado como paso previo el estudio de la optimización y el entendimiento del proceso de deshidratación selectiva de glicerol a hidroxiacetona (o acetol). A través de la obtención de este compuesto intermedio, se han podido desarrollar procesos de producción de los heterociclos nitrogenados eficientes y selectivos, en condiciones de reacción moderadas. A este respecto, los precursores de hidrotalcitas del tipo Cu-Mg-Al dan lugar a una familia de materiales basados en óxidos mixtos Cu-Mg-Al capaces de llevar a cabo la deshidratación selectiva de glicerol a acetol en continuo con rendimientos del ¿40%. Además, estos catalizadores son estables durante más de 8 horas, mostrando también excelente capacidad de regeneración y reusabilidad. Del mismo modo, la combinación de centros ácido-base y redox exhibida por estos materiales ha permitido, a través de la combinación de estudios catalíticos y de caracterización, avanzar en el estado del arte en lo que respecta a la comprensión de esta reacción de deshidratación catalítica de glicerol. De esta forma, se ha podido comprobar el papel fundamental de las especies de Cu y, en concreto de las especies Cu(I) presentes en los catalizadores, en la generación de gliceraldehido como intermedio clave para la producción de acetol. Del mismo modo, los centros ácidos del catalizador facilitan la primera adsorción del glicerol, acelerando así la reacción. No obstante, la necesidad de alcanzar productividades de acetol más elevadas para asegurar el éxito de la estrategia global motivó el desarrollo y estudio, en este proceso de deshidratación selectiva de glicerol en continuo, de una segunda familia de catalizadores basados en óxido de cobre soportado sobre diferentes óxidos metálicos (SiO2, Al2O3 y ZrO2), combinando centros ácidos de Lewis y una alta exposición del Cu. La adecuada selección y optimización de estos materiales lleva a lograr, con varios de ellos, rendimientos del 60% a acetol con concentraciones de glicerol en la alimentación mucho más elevadas. Una vez establecidos varios sistemas catalíticos para la producción de acetol, se abordó la producción de los heterociclos nitrogenados de interés a partir de la combinación de esta molécula con etilendiamina. En concreto, el catalizador Pd/TiO2-Al2O3 tiene alta actividad específica hacia la formación de 2-metilpiperazina (80% de rendimiento), gracias a su elevada exposición de centros de Pd insaturados, crítica para activar el doble enlace C=N y así proceder a la hidrogenación de las iminas intermedias. En segundo lugar, el catalizador CuO/Al2O3-npw, muestra rendimientos del 50% a la 2-metilpirazina, siendo posible alcanzar valores cercanos al 60% cuando se usa el método de precipitación-deposición por micelas en fase reversa para incorporar las nanopartículas de CuO. Finalmente, se llevó a cabo una prueba de concepto para la síntesis de 2-metilpirazina a partir de glicerol en un reactor multi-lecho especialmente diseñado para realizar las dos etapas del proceso en "one-pot" con el mismo catalizador basado en CuO-soportado, obteniéndose resultados prometedores. En definitiva, se han establecido dos nuevas rutas catalíticas para la producción de heterociclos nitrogenados con glicerol como la principal fuente de carbono a través de su derivado acetol, abriéndose así nuevas perspectivas en el campo de la valorización sostenible de moléculas derivadas de biomasa. / [CA] La present tesi doctoral aborda el desenvolupament de nous processos catalítics centrats en la valorització del glicerol, subproducte principal en la síntesi de biodièsel, utilitzant-lo com a font de carboni per a la producció d'heterocicles nitrogenats d'interès industrial. En concret, per a la producció de 2-metilpiperazina i 2-metilpirazina. A causa de la baixa reactivitat del glicerol i les dràstiques condicions de reacció que serien necessàries per a dur a terme les transformacions a aquests heterocicles, s'ha plantejat com a pas previ un estudi detallat escometent l'optimització i l'enteniment del procés de deshidratació selectiva de glicerol a hidroxiacetona (o acetol). A través de l'obtenció d'aquest compost intermedi, s'han desenvolupat processos de producció dels heterocicles nitrogenats eficients i selectius, en condicions de reacció moderades. Referent a això, els precursors hidrotalcítics Cu-Mg-Al donen com a resultat una família de materials basats en òxids mixtos Cu-Mg-Al capaços de dur a terme la deshidratació selectiva de glicerol a acetol en continu amb rendiments del 40%. Així mateix, aquests catalitzadors són estables durant més de 8 hores, mostrant a més una excel·lent regenerabilitat i reusabilitat. De la mateixa manera, la combinació de centres àcid-base i redox exhibida per aquests materials ha permès, a través de la combinació d'estudis catalítics i de caracterització, avançar significativament en l'estat de l'art pel que fa a la comprensió d'aquesta reacció catalítica. D'aquesta manera, s'ha pogut comprovar el paper fonamental del Cu i, en concret del Cu(I), en la generació de gliceraldehid com a intermedi de reacció clau. Per altra banda, els centres àcids del catalitzador faciliten la primera adsorció del reactiu, accelerant així la reacció. No obstant això, la necessitat d'aconseguir productivitats de acetol més elevades per a assegurar l'èxit de l'estratègia global va motivar l'ús, en aquest procés de deshidratació selectiva de glicerol en continu, d'una segona família de catalitzadors basats en òxid de coure suportat sobre diferents òxids inorgànics d'alta àrea (SiO2, Al2O3 i ZrO2), combinant centres àcids de Lewis i una alta exposició del Cu. L'adequada selecció i optimització d'aquests materials aconsegueix, amb alguns d'ells, rendiments del 60% a acetol amb concentracions de glicerol en l'alimentació molt més elevades. Una vegada establits diversos sistemes catalítics per a la producció d'acetol, es va abordar la producció dels heterocicles nitrogenats d'interès a partir de la combinació d'aquesta molècula amb etilendiamina. En concret, el catalitzador Pd/TiO2-Al2O3 té una alta activitat específica cap a la formació de 2-metilpiperazina (80% de rendiment), gràcies a la seua elevada exposició de centres de Pd insaturats, crítica per a activar el doble enllaç C=N i així procedir a la hidrogenació de les imines intermèdies. En segon lloc, s'ha pogut comprovar que, en presència d'un catalitzador principalment àcid contenint Cu, és possible realitzar la dehidrociclació d'acetol amb etilendiamina per a obtindre 2-metilpirazina i altres alquilpirazinas. Concretament, el catalitzador CuO/Al2O3-npw, mostra rendiments del 50% a la 2-metilpirazina, sent possible aconseguir valors pròxims al 60% quan s'utilitza el mètode de precipitació-deposició per micel·les en fase revessa per a incorporar les nanopartícules de CuO. Finalment, es va dur a terme una prova de concepte per a la síntesi de 2-metilpirazina a partir de glicerol en un reactor multi-llit especialment dissenyat per realitzar les dues etapes del procés en "one-pot" amb el mateix catalitzador basat en CuO-suportat, amb resultats prometedors. D'aquesta manera, s'han establit dues noves rutes catalítiques per a la producció d'heterocicles nitrogenats amb glicerol com a la principal font de carboni, a través del seu derivat acetol obrint així noves perspectives en l'àmbit de la valorització sostenible de les molècules derivades de la biomassa. / [EN] This doctoral thesis addresses the development of new catalytic processes centered on glycerol valorization, which is the main by-product of biodiesel synthesis. In this sense, the main aim focused on using it as a carbon source to generate nitrogen heterocycles of industrial interest, specifically, to produce 2-methylpiperazine and 2-methylpyrazine. Due to the low reactivity of glycerol and the severe reaction conditions necessary to carry out the transformations towards these N-heterocycles, previous detailed research to optimize and understand the selective dehydration process of glycerol to hydroxyacetone (or acetol) was undertaken. Through obtaining this intermediate compound, it has been possible to develop efficient and selective nitrogen heterocycles production processes, under moderate reaction conditions. In this regard, Cu-Mg-Al hydrotalcite precursors give rise to a family of materials based on Cu-Mg-Al mixed oxides capable of carrying out the selective dehydration of glycerol to acetol continuously with yields of 40%. In addition, these catalysts are stable for more than 8 hours under operational conditions, showing excellent regeneration capacity and reusability. In the same way, through the combination of catalytic and characterization studies, the interesting mix of acid-base and redox centers exhibited by these materials has allowed for advancing significantly in the state of the art regarding understanding this glycerol catalytic dehydration reaction. Hence, it has been possible to verify the fundamental role of Cu species and, specifically, Cu(I) species present in the catalysts, in the generation of glyceraldehyde as a critical reaction intermediate for acetol production. Similarly, the acid centers of the catalyst facilitate the first adsorption of glycerol, thus accelerating the reaction. However, the need to achieve higher acetol productivities from glycerol to stand a chance to succeed in the overall strategy motivated the development and study of a second family of catalysts based on copper oxide supported on different metal oxides (SiO2, Al2O3 and ZrO2) combining Lewis acid centers and high Cu exposure. The proper selection and optimization of these materials lead to reaching, with several of them, yields of 60% to acetol with much higher glycerol concentrations in the starting feed. Once several catalytic systems had been established to produce acetol, the generation of the nitrogen heterocycles of interest from the combination of this molecule with ethylenediamine was investigated. Specifically, the Pd/TiO2-Al2O3 catalyst presents high specific activity when forming 2-methylpiperazine (80% yield). These excellent results could be attributed to the enhanced exposure of unsaturated Pd centers observed in this material, critical for activating the C=N double bond and thus proceeding to the hydrogenation of the intermediate imines. Secondly, the CuO/Al2O3-npw catalyst yields 50% to 2-methylpyrazine, reaching values close to 60% when the precipitation-deposition method by micelles in reverse phase is used to incorporate the CuO nanoparticles. Finally, a proof of concept of 2-methylpyrazine synthesis starting from glycerol by using a specially designed multi-bed catalytic reactor to perform the two-steps process in one-pot with the same CuO-supported catalyst was assayed, with promising results. In summary, two new catalytic routes have been established to produce nitrogen heterocycles with glycerol as the main carbon source through its derivative hydroxyacetone, thus opening new perspectives in the field of sustainable valorization of biomass-derived molecules. / Mazarío Santa-Pau, J. (2021). Catalytic transformations of glycerol via hydroxyacetone into nitrogen heterocycles of industrial interest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179915 / TESIS
14

Transformation de la cellulose par catalyse hétérogène / Cellulose conversion by heterogeneous catalysis

Chambon, Flora 30 September 2011 (has links)
La cellulose, bio-polymère composé d’unités glucose, est un composé largement disponible au sein de la biomasse lignocellulosique. Sa dépolymérisation sélective en synthons se heurte cependant à sa forte résistance aux transformations chimiques du fait de sa structure semi-cristalline. L’objectif de la thèse est d’étudier la transformation de la cellulose par catalyse hétérogène. Il a été montré qu’une dépolymérisation partielle de la cellulose en milieu aqueux était promue par les protons issus de l’autoprotolyse de l’eau à 190°C. L’ajout d’un catalyseur solide ayant une acidité de BrØnsted forte dans le milieu réactionnel s’est révélé peu influent sur la conversion de la cellulose. En revanche, la présence de catalyseurs solides possédant une acidité de Lewis forte augmente significativement la conversion de la cellulose en formant sélectivement de l’acide lactique. Cette orientation sélective de la réaction est attribuée à l’aptitude des sites acides de Lewis à coordiner les oligosaccharides solubilisés. L’ajout d’une fonction métallique (Pt) sur un acide de Lewis solide augmente aussi significativement la conversion de la cellulose, en produisant sélectivement de l’acétol et du propylène glycol. La fonction métallique, sous atmosphère d’hydrogène, ne se limite pas à l’hydrogénation des produits finaux mais pourrait aussi intervenir dans des étapes de transfert d’hydrures et de génération de protons. Une conversion efficace de la cellulose résulte ainsi d’une action combinée des protons issus du milieu aqueux générant des oligosaccharides et des sites actifs des catalyseurs hétérogènes bifonctionnels métal-acide. / Cellulose, a biopolymer composed of glucose units, is an abundant and renewable resource. Its selective depolymerisation into building blocks is difficult due to its strong resistance to chemical reactions ascribed to its semi-crystalline structure. The aim of the thesis is to study the transformation of cellulose by heterogeneous catalysis. It has been shown that a partial cellulose depolymerisation in aqueous media was promoted by the hydroxonium ions generated in situ by water autoprotolysis at 190°C. The presence of a solid BrØnsted acid in the reaction media neither improved the cellulose conversion nor led to a particular selectivity into a valuable product. By contrast, solid Lewis acids were capable of significantly improving the cellulose conversion but also of favoring the formation of lactic acid in high yield. It is proposed that the solid Lewis sites intervene via coordination of oligosaccharides, issued from cellulose depolymerisation initiated by hydroxonium ions from water. The addition of a metallic phase such as Pt° on a solid Lewis acid support has also led to remarkable performances in term of extent of cellulose conversion and selectivity towards acetol and propylene glycol. The metallic bi-functionnal catalyst, under hydrogen atmosphere, not only leads to hydrogenated products but could also intervene into hydrides transfer elementary steps. An efficient cellulose conversion is the result of a combined action of hydroxonium ions provided by the hot water media with active sites of the bifunctionnal heterogeneous catalysts.

Page generated in 0.0394 seconds