• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ecological responses of streams to anthropogenic stressors, and watershed cause-effect modeling in the Mid-Atlantic highlands region of the United States

Chen, Yushun. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xvi, 215 p. : ill., maps (some col.). Vita. Includes abstract. Includes bibliographical references.
22

Kalknings påverkan och brunifiering av ytvatten i Västra Götalands län, Sverige : Drivande faktorer och trender / The influence of lime and brownification in surface waters in Västra Götaland county, Sweden : Driving factors and trends

Andersson, Hanna January 2023 (has links)
For more than 45 years an extensive liming measure has taken place in the southwest of Sweden in Västra Götaland county. The goal with the liming is to improve the aquatic ecosystems and counteract the acidification that has occurred in a large part of catchments in this area. The acidification problem was discovered in the late seventies and had a global impact but was distinctive in northern Europe. To mitigate the problem, it was necessary to find what was causing the acidification and, in this case, it was the emissions of acidic substances. A legislation about decreasing the emissions of sulfuric acid was established by several countries in Europe and after that a change occurred. Most of the aquatic ecosystems responded well to the decreased amount of sulfuric deposition and the liming. An unexpected response to the improved health of the aquatic ecosystems was the increased water color (mgPt·l-1) in surface waters. The change in water color, often called brownification, can be a natural process and an indication that the surface waters are approaching a more natural state. In this study a total of 120 surface waters in Västra Götaland county were studied under a 40-year period. An increasing browning of surface waters and significant differences in water color between limed lakes and reference lakes was discovered. The area with the highest yearly precipitation had the largest percentual increase in water color particularly for limed lakes. The results showed significant differences in water color in limed lakes between two time periods, 1981-1985 and 2015-2020, that indicate an increasing trend in the study area. The results could not answer why the surface waters had this increase in browning and there was not possible to determine all the driving factors. Other studies have shown that increasing water color relates to a decrease in sulfuric deposition and increasing concentration of dissolved organic carbon (DOC) in the surface waters. Climate change can be a part of the explanation due to warmer temperatures, longer vegetation periods and wetter climate. Further, it is necessary to continue investigating this problem to determine the driving factors and detect possible trends.
23

Effects of soil fertility and time on the leaf physiology of sugar maple in relation to forest decline

Liu, Ge, 1961- January 1991 (has links)
No description available.
24

Quantifying macroinvertebrate structural and functional response to stream acidification and subsequent recovery in Shenandoah National Park

McIntyre, Kelly Christine 14 July 2021 (has links)
Acid rain alters freshwater pH and ion composition, preventing organisms from performing essential bodily functions causing mortality. Macroinvertebrate communities in acidified streams are characterized by species loss in response to physiological stress and altered food quality resulting from the degradation of microbial (e.g., fungi on leaves) communities. Although freshwater acidification in the U.S. is lessening following reduced industrial emissions, little is known about macroinvertebrate recovery. Often, biotic recovery is assessed by looking at changes to what taxa and how many individuals are present in the community (e.g., richness, density). While providing a metric for change, changes in "who" is there (i.e., richness) doesn't necessarily tell us changes in "what" they are doing (i.e., function). The relationship between diversity and function requires linking a "who" to their "what" with direct measurements or as indicated by their traits. Traits are attributes of an organism that aggregate biological, morphological, and behavioral information and may relate to their success in a particular environment. For example, taxa that cannot survive with stream drying (not desiccation resistant) may only be found in streams with permanent water. Trait-based taxonomic metrics could bridge "who" and "what" and expand the impact of stream recovery assessments. My objective was to assess trends over time in water chemistry and macroinvertebrate taxonomic and trait richness and density following reduced industrial emissions. To do so, I studied two long-term data sets from Shenandoah National Park to assess trends in water chemistry and macroinvertebrate taxa and trait composition over a 30-year period to identify taxa and traits that are sensitive to acidification. I also measured how much biomass macroinvertebrates produced in a year (i.e., secondary production) in two streams (1 acidified; 1 not acidified) to determine taxa and traits that are functionally sensitive to acidification. I used these structural and functional measures of sensitivity to determine if changes in trait richness or density predict changes in the function of that trait (e.g., secondary production). Changes over time show that streams have some recovery from acid rain with increasing stream pH and a greater number of taxa and traits present in the community. Changes in taxa were greater than changes in traits over time. While this result was expected as multiple taxa make up each trait category, it may also suggest minimal or delayed functional recovery over time. Still, macroinvertebrate secondary production indicated that function did differ with differences in acidification. Therefore, observed small changes in traits over time mirror prior studies that found other variables, such as competition for food or space, delay or inhibit macroinvertebrates from returning to the recovering streams. Additionally, there were similarities between traits changing over time and the secondary production of traits that differed between more and less acidified streams. Taxa characterized by long life spans and large body size (e.g., semivoltine, long adult life, slow seasonal development) appeared to be the most sensitive to changes in acidification. These findings suggest that some compositional attributes, like taxonomic or trait richness, may predict functional changes measured as secondary production while others, such as density, do not. / Master of Science in Life Sciences / Acid rain causes the acidification of freshwater stream water observed as decreased stream pH and decreased ability of watershed soils to neutralize or "soak up" acidic inputs before they enter the stream. These changes in stream water chemistry inhibit the ability of aquatic animals to perform essential bodily functions resulting in mortality. The total number of aquatic insect taxa and total number of individuals in the community have been found to decrease in response to acidification. Although freshwater acidification is lessening following reduced industrial emissions, little is known about if and how aquatic insects can recover. Often, aquatic insect recovery is assessed through looking at changes to what taxa and how many individuals are present in the community. While providing a metric for change, changes in "who" is there (i.e., richness) doesn't necessarily tell us changes in "what" they are doing (i.e., function). The relationship between diversity and function requires linking a "who" to their "what". This is often done by assessing changes in the taxa present but also looking at how the composition of traits associated with those taxa also change. Traits or taxa-specific characteristics aggregate biological, morphological, and behavioral information and may relate to their ability to live in a given environment. For example, taxa that rely on filtering and consuming fine particles may only be found in faster flowing streams where they function to remove fine particulates. Trait-based assessments could link "who" and "what" to expand our understanding of how stream ecosystems change with a stressor. My objective was to assess recovery of streams in Shenandoah National Park following reduced industrial emissions. To do so, I studied two long-term (1987-2017) data sets from to assess trends in water chemistry and macroinvertebrate taxa and traits. This enabled me to determine "who" is changing in these streams over time. I also measured how much insect biomass s produced in a year (i.e., secondary production) in two streams (1 more acidic; 1 less acidic) to determine what taxa and traits alter "what" (e.g., secondary production) they are doing. I found that long-term trends indicate some recovery from acid rain with improving water quality and an increased number of insect taxa and traits present in the community over time. Changes in insect taxa were greater than changes in their traits suggesting that stream acidification did not greatly alter "what" the insects are doing greatly to begin with or that recovery may be delayed. In contrast, my secondary production study showed that "what" macroinvertebrates are doing does differ in more or less acidic streams. Therefore, our observed minimal changes in traits over time suggest that other variables, such as competition for food or space, delay or inhibit macroinvertebrates from returning to the recovering streams. Additionally, there were similarities between traits changing over time and traits that were different in the more or less acidic streams. Taxa characterized by long life spans and large body size (e.g., semivoltine, long adult life, slow seasonal development) appeared to be the most affected by differences or changes in stream water acidity. These findings suggest that changes in "who" can predict changes in "what" to some degree though static metrics of abundance do not always reflect the function of the taxa or community.
25

Acid deposition effects on soil chemistry and forest growth on the Monongahela National Forest

Elias, Patricia Elena 29 August 2008 (has links)
Acid deposition (AD) results largely from the combustion of fossil fuels, and has been found to negatively impact forest ecosystems. AD may acidify soils through base cation leaching or Al mobilization, may cause accumulation of nitrates and sulfates in soils, and in some cases has been related to forest decline. The Monongahela National Forest (MNF) lies downwind from many sources of AD pollution, and average deposition pH is around 4.4. Therefore, managers are concerned about the possible deleterious effects of AD on the forest ecosystem. During the 2006 Forest Plan revision, evaluation of site sensitivity to acidification was specifically stated as a step in the Forest's adaptive management process. To meet this management objective, forest practitioners must understand the effects AD has on the forest, prescribe appropriate practices, and be able to monitor for future changes. To address the needs of MNF managers we used Forest Inventory and Analysis (FIA) sites to evaluate forest growth patterns on the Forest and determined the relationship between growth and key indicators of soil acidity. Furthermore, we used those relationships to create a map of site resistance to acidification across the MNF. To further develop a monitoring scheme we assessed two soil sampling protocols and two soil analysis methods for their suitability for monitoring AD-related changes in soil chemistry. Additionally, we evaluated the utility of dendrochronological and foliar sampling as AD-specific monitoring methods. Across all FIA sites on the MNF periodic mean annual volume increment (PMAVI) ranged from -9.5 m³ha⁻¹yr¹ to 11.8 m³ha⁻¹yr¹, suggesting lower-than-expected growth on two-thirds of the sites. Growth was compared to soil indicators of acidity on 30 FIA sites. In the surface horizon, effective base saturation (+), Ca concentration (+), base saturation (+), K concentration (+), Fe concentration (-), Ca/Al molar ratio (+), and Mg/Al molar ratio (+), were correlated with PMAVI (p ≤ 0.1). In the subsurface horizon pH<sub>(w)</sub> (+), effective base saturation (+), Al concentration (-), and K concentration (-) were correlated with PMAVI. Site resistance to acidification was mapped based on site parent material, aspect, elevation, soil depth, and soil texture. There was a significant (p ≤ 0.1) positive correlation between PMAVI and a resistance index developed using five soil and site factors. Resistance was also compared with key soil indicators of AD-induced decline on 28 sites across the forest, and pH, effective base saturation, and Al content were found to be the best indicators related to resistance index. Resistance index was used to create a map of the MNF, of which 14% was highly resistant (RI ≥ 0.7), 57% was moderately resistant (0.7 > RI > 0.45) and 29% was slightly resistant (RI ≤ 0.45). The first of our monitoring program evaluations compared soil sampling and analysis methods on 30 FIA plots. Analyses of variance showed that soil pH, effective base saturation, Ca/Al molar ratio, and sum of bases varied significantly with sampling protocol. We also compared lab analyses methods and found that if sampling by horizon, a linear relationship can be used to estimate Ca/Al<sub>SrCl₂</sub> ratio using NH₄Cl extractions. The second monitoring approach evaluated the utility of a northern red oak (Quercus rubra L.) dendrochronology on two FIA plots. This analysis suggests that pollution on the MNF caused a decrease in growth rate during the 50-year period from 1940 to 1990. There were no differences among ring width increment and basal area increment between the two sites. From 1900 to 2007 the two sites showed 58.5% similarity in growth trends, but these could not be attributed to a dissimilar influence of AD. The third monitoring approach evaluated the relationship between foliar and soil chemical indicators. Across FIA plots, nutrient concentrations varied by tree species. The first year results from a potted-seedling study suggest that soil acidity influences growth, and foliar concentrations are related to growth rates. This evaluation of the effects of AD on the MNF can be used to develop adaptive management plans and a monitoring program that will meet the AD-related objectives of the 2006 Forest Management plan. / Master of Science
26

Classification of environmental hydrologic behaviors in Northeastern United States

Kim, Kye Hyun, 1956- January 1989 (has links)
Environmental response to acidic deposition occurs through the vehicle of water movement in the ecosystem. As a part of the environmental studies for acidic deposition in the ecosystem, output-based hydrologic classification was done from basin hydrologies based on the distribution of the baseflow, snowmelt, and the direct runoff sources. Because of the differences in the flow paths and exposure duration, those components were assumed to represent distinct geochemical responses. As a first step, user-friendly software has been developed to calculate the baseflow based on the separation of annual hydrographs. It also generates the hydrograph for visual analysis using trial separation slope. After the software was completed, about 1200 stream flow gauging stations in Northeastern U.S. were accessed for flow separation and other hydrologic characteristics. At the final stage, based on the output from the streamflow analysis, cluster analysis was performed to classify the streamflow behaviors in terms of acidic inflow. The output from the cluster analysis shows more efficient regional boundaries of the subregions than the current regional boundaries used by U.S. Environmental Protection Agency (U.S.E.P.A.) for the environmental management in terms of acidic deposition based on the regional baseflow properties.
27

The Impacts of Multiple Anthropogenic Disturbances on the Montane Forests of the Green Mountains, Vermont, USA

Pucko, Carolyn Ann 01 January 2014 (has links)
How and why species’ ranges shift has long been a focus of ecology but is now becoming increasingly important given the current rate of climatic and environmental change. In response to global warming, species will need to migrate northward or upward to stay within their climatic tolerances. The ability of species to migrate will determine their fate and affect the community compositions of the future. However, to more accurately predict the future extent of species, we must identify and understand their responses to past and current climatic and environmental changes. The first place change is expected to occur is within ecotones where the ranges of many species converge and individuals exist at the limits of their environmental tolerances. In montane regions, these boundaries are compressed, creating a situation in which even relatively small changes in conditions can lead to shifts in the elevational ranges of species. In this dissertation, I examine the responses of forests in the Green Mountains of Vermont to recent climatic and environmental change in an attempt to understand how future climate change will affect their location and composition. I focus on the Boreal-Deciduous Ecotone (BDE), where the high elevation spruce-fir forests converge with the lower elevation northern hardwoods. In addition to investigating adult trees within the BDE, I also examine the responses of understory herbs and tree seedlings to changes in environmental and climatic factors. Factors considered in these investigations include temperature, soil environment, light environment, invasive species, competition, disturbance and many others. I will examine the complex range of responses in forest species that results from prolonged exposure to these forces alone and in combination. I have attempted to identify the responses of forest species to environmental changes by resurveying historic vegetation plots (Chapter 2), experimentally manipulating the growing environment of tree seedlings (Chapter 3) and performing dendrochronological analyses on tree rings (Chapter 4). Through my resurvey of historic vegetation plots, I determined the degree to which understory species have shifted as individuals or as groups. I also identified a set of novel understory communities that have developed since the 1960's in response to recent climate change, acid deposition and invasive species (Chapter 2). By transplanting and artificially warming tree seedlings, I identified factors responsible for limiting the growth and survival of northern hardwood species above the BDE. Temperature was the primary factor limiting sugar maple (Acer saccharum) at high elevations, while yellow birch (Betula alleghaniensis) was limited almost exclusively by light (Chapter 3). Dendrochronological studies of sugar maples indicated that prolonged exposure to acidified soils has only recently caused growth declines and has altered their relationship to climate (Chapter 4). Together, these studies have produced a cohesive picture of how northeastern montane forests have responded to recent climate change and other anthropogenic impacts. These findings can be used to help predict future species' ranges and identify species that may not be capable of migrating fast enough on their own to keep pace with changes in climatic conditions.
28

Assessing the long-term impact of acid deposition and the risk of soil acidification in boreal forests in the Athabasca oil sands region in Alberta, Canada

Jung, Kangho Unknown Date
No description available.
29

Mapping forest decline risk factors in the Quebec Appalachians

Wallace, Ian, 1960- January 1995 (has links)
The causes of recent episodes of forest decline in Canada have not yet been fully determined. Current explanations include the effects of acid depositon as well as natural causes such as climate stress. This thesis takes a geographic approach and undertakes risk-response comparisons in order to examined the problem of maple forest dieback in the Appalachian region of Quebec. Geographic Information Systems are used to map a series of forest decline risk factors relating to soil characteristics and topography. The individual risk factors, as well as models comprising weighted combinations of risk factors, are compared with actual defoliation patterns. Forest defoliation is determined using areal survey data and satellite imagery. Although statistically significant associations were obtained between defoliation patterns and several risk factors, the amount of association was not strong enough to conclude that these factors are dominant causes of forest decline.
30

Acid deposition on coniferous foliage at high elevation site in the Laurentian Mountains

McGerrigle, David N. January 1986 (has links)
No description available.

Page generated in 0.0945 seconds