• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Monitoring the Influence of Acid Deposition on Soil and Implications to Forest Health in the Daniel Boone National Forest

Sanderson, Tyler M 01 January 2014 (has links)
Combustion of fossil fuels has contributed to many environmental problems including acid deposition. The Clean Air Act (CAA) was created to reduce ecological problems by cutting emissions of sulfur and nitrogen. Reduced emissions and rainfall concentrations of acidic ions have been observed since the enactment of the CAA, but soils continue to receive some acid inputs. Soils sensitive to acid deposition have been found to have low pH, a loss of base cations and a shift in the mineral phase controlling the activity of Al3+ and/or SO42-. If inputs continue, soil may be depleted of base cations and saturated with Al and could cause low forest productivity. Soil solutions from lysimeters were taken in the Daniel Boone National Forest to evaluate potential impacts of acid deposition. In addition, tree-ring growth and chemical analysis created a timeline of forest health and ion accumulation. Physicochemical characteristics of the soils revealed that sites were very low in base saturation and pH and high in exchangeable acidity. Soil solution data indicated that sites periodically received high acid inputs leading to saturation of Al in soils and the formation of Al-hydroxy-sulfate minerals. Given these conditions, long-term changes in soil chemistry from acid deposition are acknowledged.
42

Decoupling vybraných indikátorů zátěže a dopadu na životní prostředí / Decoupling of environmental pressure and environmental impact from economic performance

Kovalský, Pavel January 2012 (has links)
7 Abstract The thesis analyses trends of two environmental aspects in spatial terms of the Czech Republic and timal terms since 1993 till 2010. The two aspects are acid deposition as environmental pressure and defoliation of forest crown as environmental impact. Since one aspect is cause of the other the thesis also analyses trends of relationship between these aspects and comapares the results with the concept of decoupling of environmental pressure from economic growth. Important findings are that despite huge relative decrease of environmental pressure expressed by acid deposition the decrease of environmental impact expressed by forest crown defoliation is very low. Although decoupling occured during the analyzed period it's not possible to say that linkage between "environmental bads" and "economic goods" was broken. The thesis reveals factors that had influence on these findings. The thesis also compares particular concepts of decoupling being used and provides author's input on which of these concepts suits the best analyzing the breakage of the links between environmental pressure from economic growth in all of its aspects. Key words: sustainable development, sustainability, decoupling of environmental pressure from economic growth, acid deposition, defoliation, gross domestic product.
43

Screening of ten maize genotypes for tolerance to acid soils using various methods

Peterson, Mkafula Thembalethu 11 1900 (has links)
Breeding maize (Zea mays L.) for tolerance to acidic soils could improve maize yields. The current study aims to identify maize genotypes with tolerance to acidic soils, as well as identifying secondary traits associated with the tolerance to soil acidity. Ten maize varieties were screened for tolerance to aluminium (Al) toxicity under glasshouse, laboratory and field conditions. In the glasshouse, two soil acidity levels (limed and unlimed soil) were used and the experiment was set up in a complete randomised design (CRD) with three replications. The experiment lasted for 10 days and measurements were taken on plant height (PH), leaf area, stem diameter and dry matter. In the laboratory, a haematoxylin staining (HS) experiment was conducted to determine the response of 10 maize varieties to Al toxicity. Two Al concentrations (0 and 222 μM) were used and the experiment was set up in a completely randomized design with three replications. After 7 days, shoot length, was recorded. Five stress tolerance indices were estimated to determine the resilience of each genotype. A root growth stress tolerance index was also computed for both experimental procedures. In the field, two trials were established at two sites, namely Mbinja and Mpumaze. Limed and unlimed plots were used, and the trial was set up in a randomized complete block design with three replications. Maize kernel yield and other standard field parameters were recorded. Selection of tolerant genotypes from the field screening was also done using three indices, namely harmonic mean (HM), stress tolerance index (STI) and stress susceptibility index (SSI). Both the glasshouse and laboratory assays identified similar genotypes of maize as being tolerant. These tolerant genotypes were Ngoyi, PANBG3492 BT, PAN 6Q408 and PHB 3442 based on the root growth stress tolerance index (RGSTI). It was therefore demonstrated that these two assays produced the same level of efficiency in identifying tolerant genotypes using this index. Based on ranking of seedling vigour index under soil acidity stress, the top three genotypes at Mpumaze were PHB32W71, PAN6616 and Sahara while at Mbinja, the top three were PAN6616, PAN6Q408 CB and PAN6P110. The genotypes PANBG3492 BT, PAN6Q408 and PHB3442 were also found to be tolerant to acidic soils at seedling stage. These genotypes are recommended for further evaluation in more sites to confirm their tolerance and yield potential under acidic soils. The study also revealed that plant height, leaf area and stem diameter could be used for indirect selection for tolerance to Al toxicity under glasshouse conditions. The seedling vigour index was also effective in identifying tolerant genotypes under glasshouse conditions. On the other hand, shoot length stress tolerance index and the haematoxylin score were useful for indirect selection for tolerance to Al toxicity in the laboratory. In the field, it was observed that ear length, leaf area and ear diameter can be useful in identifying genotypes that are tolerant to soil acidity. They can therefore be useful as indirect selection criteria under field conditions. Additionally, the best selection indices for identifying soil acidity tolerant genotypes under field conditions were the HM and the STI. It is recommended that varieties that were identified as tolerant be further evaluated in several soil acidity hot spots to confirm their tolerance and stability of performance under field conditions. / Agriculture and  Animal Health / M. Sc. (Agriculture)
44

Changes in fluxes of dissolved organic carbon (DOC) from small catchments in central Scotland

Wearing, Catherine Louise January 2008 (has links)
Concentrations of dissolved organic carbon (DOC) measured within water bodies have been increasing on a global scale over the last two decades. Changes in temperature and rainfall have been shown to increase the production and export of DOC from catchments with peat soils in the UK (Freeman et al., 2001). However it is not clear whether increases in DOC concentrations are caused by production increases induced by temperature changes or by a greater incidence of high flows induced by rainfall changes. Increases in both temperature and rainfall have been predicted in Scotland over the next few decades (Kerr et al., 1999) which may further increase current DOC concentrations and exports. The implications of this include both a decrease in water quality and an increase in mobility of metals in upland water bodies. The overall aim of the thesis is to determine if the relationship between dissolved organic carbon (DOC) concentrations and discharge has changed over a 20 year period in small stream catchments in Scotland, in order to better understand the role of hydrology, in driving changes in DOC concentration. To achieve this streams draining two coniferous forest sites and one moorland site were monitored intensively between June 2004 and February 2006. Analysis of the relationship between DOC and discharge, within the catchments, identified the importance of the amount of precipitation falling on the catchment, antecedent precipitation and season, on the concentration of DOC that was measured within the stream. Models were then developed using variables to represent these drivers in terms of both the production (seasonal sine values and 14 day average temperatures) and movement (log of discharge (log Q), days since previous storm event and rising or falling stage) of DOC. In the Ochil Hills catchment, the best predictive model, used 4 hour average discharge and 1 day average 30cm soil temperatures (R2= 0.88). In the Duchray and Elrig catchments, the best predictive models produced used discharge and seasonal sine values; the strength of the model was greater in the Elrig (R2= 0.80) than the Duchray (R2= 0.48) catchment. The strength of the regression models produced highlighted the importance of precipitation in the movement of DOC to the stream and temperature variables representing production in the surrounding catchment. To determine if dissolved organic carbon (DOC) concentrations had changed within the three study catchments, since previous research was conducted at the same sites in the early 1980s and 1990s (Grieve, 1984a; Grieve, 1994), then regression analysis conducted in the previous research was repeated, so changes in the DOC and discharge relationship could be identified. Analysis of the Ochil Hills regression equations identified higher log of discharge and lower temperature and seasonal sine values in the present study (2004-06), when compared to the previous study (1982-83). This suggests that more DOC is now available for movement from the soil, and that the difference between winter and summer DOC production has decreased, potentially because of increasing temperatures. This would explain the limited increase in DOC concentration within the Ochil Hills stream. In the Duchray and Elrig streams, a large increase in DOC was identified at all discharges when all the models produced were compared between the two sampling periods (1989-90 and 2004-06). The increasing trend in DOC concentrations is too large to have been produced by change in temperature alone and it is suggested that the measured reduction in acidic deposition has resulted in the increased DOC concentrations measured in the Duchray and Elrig. The results from this research have identified that concentrations of DOC have increased in Scottish streams over the last 20 years and that the increases in DOC have been induced, potentially by temperature changes in climate. However, changes in temperature are not the only driver of this change as the reduction in acidic deposition is potentially more important, specifically in areas with base poor geology such as the Duchray and Elrig catchments.
45

Soil Iron, Aluminum, and Phosphorus Dynamics in Response to Long-Term Nitrogen and Sulfur Additions at the Bear Brook Watershed in Maine

Sherman, Jessica F. January 2005 (has links) (PDF)
No description available.
46

Brunifiering av Öjaren : Analys och framtida utsikter

Bergman, Anders, Lindgren, Samuel January 2017 (has links)
Sjön Öjaren i Sandviken är den största dricksvattentäkten i kommunen, färgen på Öjarens vatten har med åren ändrats och blivit allt mörkare. Detta bekräftas vid analys av vattenprover mellan år 1995-2015 som utförts i denna studie. Denna förändring av vattenfärg är inte unik för Öjaren utan har påvisats i flera andra sjöar och vattendrag. Orsakerna till förändrad vattenfärg skiljer sig till viss del beroende på vilken vattenförekomst som undersöks, olika egenskaper som klimat, markbeskaffenhet samt föroreningar bidrar i varierad utsträckning till brunifiering. Gemensamt för Öjaren och andra vattenförekomster är att ökad tillförsel av löst organiskt kol och järn är orsaker till brunifiering. För Öjaren har även ökade manganhalter visat sig påverka brunifieringen. Syftet med denna studie är att undersöka ett eventuellt samband mellan färgen på vattnet i Öjaren och de faktorer som anses påverka färgen. De faktorer som analyseras och enligt tidigare studier anses vara relevanta är järn, pH, COD, mangan, temperatur och nederbörd. Syftet är även att undersöka möjliga åtgärder för att motverka brunifiering. Vattenprover från Öjaren mellan åren 1995-2015 har legat till grund för den statistiska analys som utförts. För att finna eventuella samband har Pearson´s korrelationskoefficient beräknats i programmet Minitab 17. För att ytterligare beskriva det eventuella sambandet mellan faktorerna har en principal component analysis (PCA) utförts. Trender och prognoser har även de tagits fram genom Minitab. Korrelationsanalyserna har visat på mest signifikant samband mellan färgtal och faktorerna järn, COD och mangan. Resultaten av korrelationsanalysen förstärks av PCA:n där det uppvisas att färgtal, järn och COD till störst del samvarierar. Trenden och den framtida prognosen för samtliga undersökta faktorer visar på stigande värden. Detta innebär att dricksvattenberedningen blir mer komplicerad och kostsam samt att dricksvattenkvalitén riskerar att försämras. Denna utveckling är något som förväntas beröra flera ytvattentäkter i bl.a. Europa och Nordamerika. Färgtalet i Öjaren förväntas stiga med 63 % fram till år 2050 vilket innebär att åtgärder för att motverka brunifieringen i Öjaren och andra liknande ytvattenförekomster är nödvändiga för att de ska kunna användas som dricksvattentäkter i framtiden. / The colouring of water in many lakes across the Northern hemisphere is increasing. This is also the case in Lake Öjaren in Sandviken municipality in Sweden. The lake is the main water source in Sandviken and has a high and increasing watercolour. This leads to more complex cleaning methods and higher costs for the society. This study focuses on the changing and increasing watercolour in the lake over a period from 1995-2015. The factors analysed in this study are those who is considered to have an effect on the watercolour in the lake. The reasons for increased brownification are different depending on which type of water body is studied. Climate, soil conditions and pollutants contributes in varying extent to brownification. Increased levels in dissolved organic carbon (DOC) and iron are common reasons for brownification in Lake Öjaren and other water bodies, in Lake Öjaren increased levels of manganese are also shown to affect brownification. The aim of the study is to evaluate the correlation between the watercolour and the factors: iron, pH, COD, manganese, temperature and precipitation. The aim is also to investigate which actions are possible to apply to prevent increased watercolour. Water samples from Lake Öjaren between the years 1995-2015 have been the basis for the executed statistical analysis. Evaluating the correlation between the factors we have used Minitab 17 and calculated Pearson´s correlation coefficient. To further explain the relationship between the factors a principal component analysis (PCA) has been performed. Future scenarios and current trends have also been produced, in order to develop a better foundation for further studies. The correlation analysis reveals that the most significant connection with watercolour are iron, COD and manganese. The result of the PCA also corroborates this connection where three factors are the ones that are most co-variating. The trend and the future scenario for all the factors in Lake Öjaren are that they all are increasing and the watercolour is expected to be increasing by 63 % until year 2050. This scenario means that actions are needed to counteract the increasing colouring of the water.
47

The effect of acid mine drainage on the hatching success of branchiopod crustaceans from selected South African pans

Henri, Aidan Jean 01 July 2014 (has links)
M.Sc. (Zoology) / Pans are endorheic wetlands, and are abundant in South Africa in a band from the western Free State into Mpumalanga. The pan environment experiences daily and seasonal fluctuations in physico-chemical conditions. The physico-chemical variables are influenced by the local climatological and hydrological conditions, and are all inter-related. An imbalance of one variable can have countless effects on the others. The physico-chemical composition of the water ultimately determines the existence of the biota in such wetlands. Branchiopod crustaceans are a unique group of fauna which have various morphological, physiological and behavioural adaptations which enable them to survive in these variable environments. One such adaptation is the production of dormant egg banks. These eggs reside within the sediment through the dry phase and hatch during a following wet phase when conditions are favourable. Due to the endorheic nature of pans they are more vulnerable to anthropogenic stress. Anthropogenic activities are having profound effects on the integrity of these ecosystems. Agricultural and mining activities have some of the largest influences. The impacts that the following activities have include: the over utilisation of water, decreased periods of inundation, erosion and sedimentation, effluent discharge and direct habitat destruction. Many wetlands as a result are experiencing a rapid loss in biodiversity. Mining activities are on the increase especially in the Highveld region of southern Africa. Many of these wetlands are already (and will be in the future) affected by mining activities, making the effect of acid mine drainage (AMD) on the biota a priority concern. In conjunction with the uniqueness and vulnerability of pan ecosystems it is necessary to find new ways of monitoring such environmental impacts in the shortest time possible with minimal efforts, for the benefit of both the environment and researchers involved. This study therefore aimed to assess the diversity of branchiopod crustaceans hatching from egg banks of selected pans and obtain a reference community structure. It also aimed to assess the impacts AMD could have on the hatching success of branchiopods from these egg banks with the objective to determine whether these egg banks are still viable after exposure. To achieve the stated aims and objectives, sediment samples were collected from selected pans in mining regions of the country. Regions selected included Chrissiesmeer in the Mpumalanga province, Wesselsbron in the Free State province and Delareyville in the North West province. The sediment was used for hatching experiments in the laboratory. Pan sediment was exposed to three different treatments which included two salt solutions (1000 mg/l and 1500 mg/l respectively) and AMD. The salt solutions served as controls while the AMD served as an exposure. The number of nauplii hatching was counted in the controls and compared to the number of nauplii hatching in the AMD. The diversity of nauplii was also assessed and compared between controls and the AMD. The recovery potential of eggs exposed to AMD was also assessed by exposing the sediment treated with AMD to distilled water after its removal to get a better understanding on the effects of AMD at the community level. Results from the control treatments indicated that most pans have a range of taxa hatching that follow patterns of pan succession. Between the 1000 mg/l and 1500 mg/l controls there was no treatment that proved superior to the other. Representatives of all four orders of branchiopoda hatched from the experiments. The North West and Free State pans were the most diverse and had had the greatest abundances of individuals hatching. Spatially all three provinces differed in the diversity of individuals hatching from pans, as there were distinct differences in the taxonomic compositions. Although taxonomic composition of pans grouped together per province, pans from just a single province were largely dissimilar. Results from the AMD treatments indicated that AMD has a negative effect on the hatching ability of branchiopod crustacean eggs. Eggs that were initially exposed to AMD were unable to hatch in its presence. The recovery experiments indicated that recovery after exposure is limited as recovery only occurred in a few pans. The taxonomic composition of nauplii in the pans where recovery took place was altered and less diverse than the taxonomic composition found in the respective control treatments. Overall it was found that hatching experiments can be used as a monitoring tool in lieu of field sampling. Hatching experiments showed that AMD is detrimental to the branchiopod egg banks, inhibiting the ability of eggs to hatch in its presence. Recovery can take place but the recovery potential is low. Since the recovery potential of the egg banks is low, pans which are affected by AMD could experience extinction of the entire branchiopod community in years to come. As branchiopod communities are unique among pans, and serve as an important food source for many aquatic bird species, their extinction will bring about further losses in biodiversity.
48

Effects of gaseous emissions from the Namakwa Sands Mineral Separation Plant near Lutzville on the adjacent succulent Karoo vegetation : a pilot study

Lukama, Beatice M. K. 03 1900 (has links)
Thesis (MSc (Conservation Ecology and Entomology)--University of Stellenbosch, 2006. / A pilot study was conducted at the Namakwa Sands Mineral Separation Plant, to investigate the effects of acidic gaseous emissions from the Mineral Separation Plant on the adjacent Succulent Karoo vegetation. Sulphuric acid fumes, a major gaseous emission of the mineral processing, was the subject of investigation of the present study, due to the potential high negative impact of elevated concentrations thereof on vegetation in the ecosystem. Permanent sample plots along three transects radiating from the Mineral Separation Plant were laid out in the eastern, south-eastern and southern directions following the prevailing wind directions and practical consideration of land accessibility. The ecological components assessed as indicators of possible pollution levels in the environment included percentage plant mortality, foliar sulphur content of selected plant species, chemical composition of solubles in mist and dust samples, and soil pH. In addition, the vegetation was screened for plant species suitable to be used as potential bioindicators. Potential bioindicator plant species were selected on the basis of their relatively wide distribution in the study area and apparent sensitivity to the ambient air pollutants. The percentage of dead plants of each species that occurred on the sample plots was used as a criterion of the possible sensitivity of the plant species towards air pollution. The bioindicator plant species selected for potential monitoring purposes were: Galenia fruticosa, Lampranthus suavissimus, Lycium ferocissimum and a Ruschia sp. (SP 9). Plant mortality was greater nearer the emission source, with 28 + 5 % dead plants at 400 m, 19 + 6 % at 800 m and only 10 + 4 % at 1,200 m from the Mineral Separation Plant. Data summed for all species recorded and pooled for all three transects per sampling distance. With the methods used in this study, in the case of all sample plots on the three transects, no significant difference was found between the mean pH values of soil samples collected from open spaces without plant cover (8.01 + 0.46) and those collected underneath shrubs (8.91 + 0.96). Subsequently only the pH values of soil samples collected on open spaces were used to investigate the variation in soil acidity with distance and direction from the emission source. The means represent total number of samples from open space versus those collected from underneath shrubs. The pH of soil samples increased with distance from the emission source along the transects to the south and south-east of the emission source. Eastward of the emission source, soil pH values remained relatively low at all sample distances. This pilot study could not determine whether the continuous acidity of the soil along the eastern transect in the direction of the prevailing wind, was caused by increased deposition of gaseous emissions on the higher lying hilly terrain in this area, or by the underlying geology. Ion chromatographic analysis of mist and dust samples collected on each sample plot indicated the presence of several chemicals that had probably originated from the gaseous emissions from the Mineral Separation Plant as well as wind blown constituents from the adjacent surroundings of the sample plots. Of these chemicals, only the sulphate concentrations of the mist and dust samples were further evaluated, since that could be related to the emission of sulphuric acid fumes by the Mineral Separation Plant. Results indicated that the mean sulphate concentration of mist and dust samples collected from sample plots relatively close to the Mineral Separation Plant, 118.8 + 31.6 mg/litre (400 m), were higher than further afield, decreasing to 57 + 30.1 mg/litre at 800 m and 43.1 + 19.6 mg/litre at 1,200 m. These values, representing the mean sulphate concentrations of mist and dust samples at each sampling distance (data of the three transects pooled), differ significantly at the 85 % confidence level. Statistical evaluation of the data of the mist and dust pH measurements, pooled for the three transects on the basis of distance, indicated a gradual increase of the mean values from 400 m (7.3 + 0.26), through 800 m (7.7 + 0.34), to 1,200 m (8.2 + 0.83), although these values were not significantly different. A decreasing trend in accordance with that in the case of the sulphate concentrations of mist and dust samples with distance from the mineral processing plant, was also observed in the sulphur content of the leaves of selected plant species, with mean sulphur content higher at 400 m sampling distance (0.29 + 0.091 %) than at 800 m (0.264 + 0.086 %) and a further decline at 1,200 m (0.232 + 0.079 %), data of the three transects pooled. However, these values were also not significantly different. Although not significantly so, the decreasing trend in the results of the sulphate concentration of mist and dust samples, the sulphur content of plant leaf samples as well as plant mortality observed, and increasing soil pH values with distance from the Mineral Separation Plant, suggest that the gaseous emissions from the Mineral Separation Plant could probably have had a detrimental effect on the adjacent Succulent Karoo vegetation. A more detailed study is necessary to confirm this trend. In addition it is recommended that in order to clarify the soil pH measurements outcome along the eastern transect that were contradicted by the results of the mist and dust pH measurements, a more intensive survey over a greater distance (at least further than 1.2 km from the Mineral Separation Plant), be conducted to quantify vegetation damage and acid deposition to the east of the emission source.
49

The Response of Zooplankton Communities in Montane Lakes of Different Fish Stocking Histories to Atmospheric Nitrogen Deposition Simulations

Brittain, Jeffrey Thomas 21 May 2015 (has links)
Freshwater ecosystems are subject to a wide variety of stressors, which can have complex interactions and result in ecological surprises. Non-native fish introductions have drastically reduced the number of naturally fishless lakes and have resulted in cascading food web repercussions in aquatic and terrestrial habitats. Additional anthropogenic influences that result from increases in global airborne emissions also threaten wildlife habitat. Atmospheric nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of wilderness ecosystems. Planktonic communities have shown declines in response to predation and shifts in composition as a result of nutrient inputs and acidification, both of which are potential fates of nitrogen deposition. This study identified the response of zooplankton communities from two lakes (fish present vs. absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance event in mesocosms. The experiment used a 2 x 2 factorial design with acid and nitrogen treatments. Treatments resulted in significantly elevated nitrogen and decreased pH conditions from control mesocosms over 42 days, indicating that the treatment effects were achieved. Results indicate that zooplankton communities from lakes with different food web structure respond differently to the singular effects of acid and nitrogen addition. Surprisingly, the interaction of the two stressors was related to increases in community metrics (e.g., abundance, biomass, body size, richness, and Shannon-Weiner diversity) for both lake types. This work can aid management decisions as agencies look to restore more aquatic montane habitats to their historic fishless states, and assess their abilities to recover and afford resistance to atmospheric pollution.

Page generated in 0.0971 seconds