• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 105
  • 94
  • 24
  • 18
  • 17
  • 16
  • 15
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Acoustics in the Klebanoff-Saric Wind Tunnel: Background Identification, Forcing, and Active Control

Kuester, Matthew 2012 May 1900 (has links)
Low disturbance wind tunnels, such as the Klebanoff–Saric Wind Tunnel (KSWT), offer an ideal environment to study boundary layer transition. In particular, the leading-edge receptivity of sound can be measured by creating acoustic disturbances that interact with the leading edge of a model to create Tollmien–Schlichting Waves. The magnitude and composition (sound, turbulence) of the background disturbances can affect these experiments, so the background disturbances should be minimized and documented thoroughly. The purpose of this thesis is to document the background acoustic signature of the KSWT and describe infrastructure upgrades for acoustic receptivity experiments. The measurements presented in this thesis will support future receptivity measurements in the KSWT. Microphone measurements revealed several important acoustic features in the tunnel. Cross correlations showed that two sources of low-frequency unsteadiness (the extended diffuser and corner two) create large pressure fluctuations that dominate the pressure spectrum. Directional separation of waves in the test section revealed that motor and blade passing noise travels primarily upstream into the test section. Finally, the acoustic treatments in the plenum are effective at removing sound from the tunnel. A wall of speakers was installed in the plenum to enable acoustic receptivity experiments. The speakers create both the primary downstream traveling waves and reflected upstream traveling waves in the test section. An adaptive closed loop control system was installed to reduce the amplitude of the reflected waves during acoustic forcing. Although the performance of the control system is frequency dependent, the technique was implemented successfully. The reduction in the diffuser reflection will increase the quality of future acoustic receptivity experiments in the KSWT.
22

Electromechanical modelling and active control of flexural rotor vibration in cage rotor electrical machines /

Laiho, Antti. January 1900 (has links) (PDF)
Thesis (doctoral)--Helsinki University of Technology, 2009. / Includes bibliographical references. Also available on the World Wide Web.
23

Active Noise Control of a Forest Machine Cabin / Aktiv Bullerdämpning av Förarhytt på Skogsmaskin

Hedborg, Mårten, Grylin, Patrik January 2007 (has links)
Today, a high noise level is considered a problem in many working environments. The main reason is that it contributes to stress and fatigue. Traditional methods using passive noise control is only practicable for high frequencies. As a complement to passive noise control, active noise control (ANC) can be used to reduce low frequency noise. The main idea of ANC is to use destructive interference of waves to cancel disturbing noises. The purpose of this thesis is to design and implement an ANC system in the driver's cabin of a Valmet 890 forest machine. The engine boom is one of the most disturbing noises and therefore the main subjective for the ANC system to suppress. The ANC system is implemented on a Texas Instrument DSP development starter kit. Different FxLMS algorithms are evaluated with feedback and feedforward configurations. The results indicate that an ANC system significantly reduces the sound pressure level (SPL) in the cabin. Best performance of the evaluated systems is achieved for the feedforward FxLMS system. For a commonly used engine speed of 1500 rpm, the SPL is reduced with 17 dB. The results show fast enough convergence and global suppression of low frequency noise.
24

Active control of sound in a small single engine aircraft cabin with virtual error sensors

Kestell, Colin David January 2000 (has links)
The harmful effects of aircraft noise, with respect to both comfort and occupational health, have long since been recognised, with many examples of sound control now implemented in commercial aircraft. However, the single engine light aircraft cabin is still an extremely noisy environment, which apparently has been side-lined by both cost and weight constraints, especially with respect to low frequency sound reduction. Consequently, pilots and passengers of these aircraft are still exposed to potentially damaging noise levels and hearing damage can only be avoided by the proper use of ear defenders. Minimisation of the noise around the occupants of the aircraft reduces the dependency of personal ear defenders and is conducive to a more comfortable, hygienic and less stressful environment. This thesis describes the basis of a theoretical and experimental project, directed at the design and evaluation of a practical active noise control (ANC) system suitable for a single engine light aircraft. Results from initial experiments conducted in a single engine aircraft demonstrated the viability of ANC for this application. However, the extreme noise, the highly damped cabin, the multiple tone excitation, the severe weight limitations and the requirement of air worthiness certification severely complicated the problem of achieving noise reduction throughout the entire aircraft cabin. Compromising the objective to only achieving local control around the occupants still presented difficulties because the region of attenuated noise around the error sensors was so small that a nearby observer experienced no sound level reduction whatsoever. The objective was therefore to move the control zone away from the error sensor and place a broad envelope of noise reduction immediately around the occupant's head, through the use of virtual sensors , thus creating the perception of global noise control. While virtual sensors are not new (Garcia-Bonito et al. (1996)), they are currently limited to acoustic pressure estimation (virtual microphones) via the initial measurement of an observer / sensor transfer function. In this research, new virtual sensor algorithms have been developed to: 1. minimise the sound level at the observer location, 2. broaden the control region, 3. adapt to any physical system changes and 4. produce a control zone that may ultimately follow an observer's head The performance of the virtual sensors were evaluated both analytically and experimentally in progressively more complex environments to identify their capabilities and limitations. It was found that the use of virtual sensors would, in general, attenuate the noise at the observer location more effectively than when using conventional remotely placed error sensors. Such a control strategy was considered to be ideal for a light single engine aircraft, because it would only require small light speakers (possibly fitted into a head-rest) to achieve a broad control zone that envelopes the region around the occupants heads. / Thesis (Ph.D.) -- University of Adelaide, Dept. of Mechanical Engineering), 2000.
25

Spatially fixed and moving virtual sensing methods for active noise control.

Moreau, Danielle J. January 2010 (has links)
Local active noise control systems generate a zone of quiet at the physical error sensor location. While significant attenuation is achieved at the error sensor, local noise control is not without its problems, chiefly that the zone of quiet is generally small and impractically sized. It may be inconvenient to place the error sensor at the desired location of attenuation, such as near an observer’s ear, preventing the small zone of quiet from being centered there. To overcome the problems encountered in local active noise control, virtual acoustic sensors have been developed to shift the zone of quiet away from the physical sensor position to a spatially fixed desired location. The general aim of the research presented in this thesis is to improve and extend the spatially fixed and moving virtual sensing algorithms developed for active noise control thus far and hence increase the scope and application of local active noise control systems. To achieve this research aim, a number of novel spatially fixed and moving virtual sensing algorithms are presented for local active noise control. In this thesis, a spatially fixed virtual sensing technique named the Stochastically Optimal Tonal Diffuse Field (SOTDF) virtual sensing method is developed specifically for use in pure tone diffuse sound fields. The SOTDF virtual sensing method is a fixed gain virtual sensing method that does not require a preliminary identification stage nor models of the complex transfer functions between the error sensors and the sources. SOTDF virtual microphones and virtual energy density sensors that use both pressure and pressure gradient sensors are developed using the SOTDF virtual sensing method. The performance of these SOTDF virtual sensors is investigated in numerical simulations and using experimental measurements made in a reverberation chamber. SOTDF virtual sensors are shown to accurately estimate the pressure and pressure gradient at a virtual location and to effectively shift the zone of quiet away from the physical sensors to the virtual location. In numerically simulated and post-processed experimental control, both virtual microphones and virtual energy density sensors achieve higher attenuation at the virtual location than conventional control strategies employing their physical counterpart. As it is likely that the desired location of attenuation is not spatially fixed, a number of moving virtual sensing algorithms are also developed in this thesis. These moving virtual sensing algorithms generate a virtual microphone that tracks the desired location of attenuation as it moves through a three-dimensional sound field. To determine the level of attenuation that can be expected at the ear of a seated observer in practice, the performance of the moving virtual sensing algorithms in generating a moving zone of quiet at the single ear of a rotating artificial head is investigated in real-time experiments conducted in a modally dense three dimensional cavity. Results of real-time experiments demonstrate that moving virtual sensors provide improved attenuation at the moving virtual location compared to either fixed virtual sensors or fixed physical sensors. As an acoustic energy density cost function spatially extends the zone of quiet generated at the sensor location, a fixed three-dimensional virtual acoustic energy density sensing method is also developed for use in a modally dense three-dimensional sound field. The size of the localised zone of quiet achieved by minimising either the acoustic energy density or the squared pressure at the virtual location with the active noise control system is compared in real-time experiments conduced in a modally dense three-dimensional cavity. Experimental results demonstrate that minimising the virtual acoustic energy density provides improved attenuation in the sound field and a larger 10 dB zone of quiet at the virtual location than virtual microphones. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1522526 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2010
26

Active control of sound in a small single engine aircraft cabin with virtual error sensors

Kestell, Colin David January 2000 (has links)
The harmful effects of aircraft noise, with respect to both comfort and occupational health, have long since been recognised, with many examples of sound control now implemented in commercial aircraft. However, the single engine light aircraft cabin is still an extremely noisy environment, which apparently has been side-lined by both cost and weight constraints, especially with respect to low frequency sound reduction. Consequently, pilots and passengers of these aircraft are still exposed to potentially damaging noise levels and hearing damage can only be avoided by the proper use of ear defenders. Minimisation of the noise around the occupants of the aircraft reduces the dependency of personal ear defenders and is conducive to a more comfortable, hygienic and less stressful environment. This thesis describes the basis of a theoretical and experimental project, directed at the design and evaluation of a practical active noise control (ANC) system suitable for a single engine light aircraft. Results from initial experiments conducted in a single engine aircraft demonstrated the viability of ANC for this application. However, the extreme noise, the highly damped cabin, the multiple tone excitation, the severe weight limitations and the requirement of air worthiness certification severely complicated the problem of achieving noise reduction throughout the entire aircraft cabin. Compromising the objective to only achieving local control around the occupants still presented difficulties because the region of attenuated noise around the error sensors was so small that a nearby observer experienced no sound level reduction whatsoever. The objective was therefore to move the control zone away from the error sensor and place a broad envelope of noise reduction immediately around the occupant's head, through the use of virtual sensors , thus creating the perception of global noise control. While virtual sensors are not new (Garcia-Bonito et al. (1996)), they are currently limited to acoustic pressure estimation (virtual microphones) via the initial measurement of an observer / sensor transfer function. In this research, new virtual sensor algorithms have been developed to: 1. minimise the sound level at the observer location, 2. broaden the control region, 3. adapt to any physical system changes and 4. produce a control zone that may ultimately follow an observer's head The performance of the virtual sensors were evaluated both analytically and experimentally in progressively more complex environments to identify their capabilities and limitations. It was found that the use of virtual sensors would, in general, attenuate the noise at the observer location more effectively than when using conventional remotely placed error sensors. Such a control strategy was considered to be ideal for a light single engine aircraft, because it would only require small light speakers (possibly fitted into a head-rest) to achieve a broad control zone that envelopes the region around the occupants heads. / Thesis (Ph.D.) -- University of Adelaide, Dept. of Mechanical Engineering), 2000.
27

An air suspension cushion to reduce human exposure to vibration /

Van der Merwe, Andre Francois. January 2007 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
28

Active vibration control of multibody systems : application to automotive design /

Olsson, Claes, January 2005 (has links)
Diss. Uppsala : Uppsala universitet, 2005.
29

Characterization of noise and design of active noise control technology in longwall mines

Rai, Arunkumar R. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains xi, 65 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 63-64).
30

Line of sight stabilization of an optical instrument using gained magnetostrictive actuators

Bester, Christiaan Rudolf 08 July 2005 (has links)
Line-of-sight stabilization of an optical instrument using magnetostnctlve actuators is described in this study. Various stabilization methods, i.e. gyroscopic, hydraulic, piezoelectric, electrodynamic and magnetostrictive methods, are compared and magnetostrictive stabilization is selected for its relatively large stroke length, low input voltage and wide frequency bandwidth. The system makes use of two magnetostrictive actuators, one at each end of the optical instrument, mounted between the moving base and instrument. Each actuator is equipped with cylindrical rods of Terfenol-D, a highly magnetostrictive material. Field coils are wound around the rods to produce a strain in the rods, thereby exciting angular motion of the instrument. Actuator stroke length is enhanced by means of a hingeless gain mechanism, rod prestressing and field biasing. Dynamic characteristics of the system are modelled to facilitate actuator, coil and control system design. A linear, single-degree-of-freedom actuator model, in state-space and transfer function forms, is derived and coupled to a distributed model of the optical instrument, using the Rayleigh-Ritz method. Transfer functions between actuator coil voltages and instrument angular acceleration are derived. Normal mode shapes, natural frequencies and damping factors are predicted. Design concepts for bias field, prestress, actuator gain and optical instrument support structure, are discussed and the most suitable concepts are selected. The required actuator gain, rod length and diameter, prestress spring stiffness, coil resistance and inductance are calculated. System components are designed in detail and safety of the design is checked. The actuators are characterized quasi-statically to determine the saturation strain, linear range of operation and DC bias field. The system is dynamically characterized to obtain transfer functions between the coil voltage and instrument angular acceleration. The test setups are described and limitations of the setups are discussed. Test results are processed and discussed. A comparison with the modelled results shows that the model is highly inaccurate. Reasons for inaccuracies are given and updating of the model is motivated. An updated model is obtained from the experimental results. The model is divided into electrical and mechanical subsystem models. The SDOF actuator models are replaced with 2DOF models (one for each actuator) and coupled to the instrument and base models, using substructure synthesis. The electrical and mechanical subsystem models are subsequently coupled. It is shown that the updated system model is considerably more accurate than the original model. A linear, suboptimal, disturbance feedforward plus output feedback controller, with output integral feedback, is designed, implemented and tested. An H2 optimal controller is designed and modified to improve robustness. The controller model is coupled to that of a suboptimal observer. An output integral feedback loop is added to further improve robustness. The controller is implemented in digital filter form. The test apparatus and procedure are described. Test results are processed and discussed. It is shown that the LOS stabilization system achieves 80% of the required isolation, over a frequency bandwidth of 0 Hz to 100 Hz. A summary of the work done, conclusions that can be drawn from the results, problems encountered and recommendations for future work, are given. / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.2312 seconds