• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 44
  • 24
  • 10
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 274
  • 188
  • 85
  • 69
  • 49
  • 38
  • 35
  • 32
  • 32
  • 31
  • 27
  • 26
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Convex duality in constrained mean-variance portfolio optimization under a regime-switching model

Donnelly, Catherine January 2008 (has links)
In this thesis, we solve a mean-variance portfolio optimization problem with portfolio constraints under a regime-switching model. Specifically, we seek a portfolio process which minimizes the variance of the terminal wealth, subject to a terminal wealth constraint and convex portfolio constraints. The regime-switching is modeled using a finite state space, continuous-time Markov chain and the market parameters are allowed to be random processes. The solution to this problem is of interest to investors in financial markets, such as pension funds, insurance companies and individuals. We establish the existence and characterization of the solution to the given problem using a convex duality method. We encode the constraints on the given problem as static penalty functions in order to derive the primal problem. Next, we synthesize the dual problem from the primal problem using convex conjugate functions. We show that the solution to the dual problem exists. From the construction of the dual problem, we find a set of necessary and sufficient conditions for the primal and dual problems to each have a solution. Using these conditions, we can show the existence of the solution to the given problem and characterize it in terms of the market parameters and the solution to the dual problem. The results of the thesis lay the foundation to find an actual solution to the given problem, by looking at specific examples. If we can find the solution to the dual problem for a specific example, then, using the characterization of the solution to the given problem, we may be able to find the actual solution to the specific example. In order to use the convex duality method, we have to prove a martingale representation theorem for processes which are locally square-integrable martingales with respect to the filtration generated by a Brownian motion and a finite state space, continuous-time Markov chain. This result may be of interest in problems involving regime-switching models which require a martingale representation theorem.
142

Gerber-Shiu analysis in some dependent Sparre Andersen risk models

Woo, Jae-Kyung 03 August 2010 (has links)
In this thesis, we consider a generalization of the classical Gerber-Shiu function in various risk models. The generalization involves introduction of two new variables in the original penalty function including the surplus prior to ruin and the deficit at ruin. These new variables are the minimum surplus level before ruin occurs and the surplus immediately after the second last claim before ruin occurs. Although these quantities can not be observed until ruin occurs, we can still identify their distributions in advance because they do not functionally depend on the time of ruin, but only depend on known quantities including the initial surplus allocated to the business. Therefore, some ruin related quantities obtained by incorporating four variables in the generalized Gerber-Shiu function can help our understanding of the analysis of the random walk and the resultant risk management. In Chapter 2, we demonstrate the generalized Gerber-Shiu functions satisfy the defective renewal equation in terms of the compound geometric distribution in the ordinary Sparre Andersen renewal risk models (continuous time). As a result, forms of joint and marginal distributions associated with the variables in the generalized penalty function are derived for an arbitrary distribution of interclaim/interarrival times. Because the identification of the compound geometric components is difficult without any specific conditions on the interclaim times, in Chapter 3 we consider the special case when the interclaim time distribution is from the Coxian class of distribution, as well as the classical compound Poisson models. Note that the analysis of the generalized Gerber-Shiu function involving three (the classical two variables and the surplus after the second last claim) is sufficient to study of four variable. It is shown to be true even in the cases where the interclaim of the first event is assumed to be different from the subsequent interclaims (i.e. delayed renewal risk models) in Chapter 4 or the counting (the number of claims) process is defined in the discrete time (i.e. discrete renewal risk models) in Chapter 5. In Chapter 6 the two-sided bounds for a renewal equation are studied. These results may be used in many cases related to the various ruin quantities from the generalized Gerber-Shiu function analyzed in previous chapters. Note that the larger number of iterations of computing the bound produces the closer result to the exact value. However, for the nonexponential bound the form of bound contains the convolution involving usually heavy-tailed distribution (e.g. heavy-tailed claims, extreme events), we need to find the alternative method to reinforce the convolution computation in this case.
143

Analysis of some risk models involving dependence

Cheung, Eric C.K. January 2010 (has links)
The seminal paper by Gerber and Shiu (1998) gave a huge boost to the study of risk theory by not only unifying but also generalizing the treatment and the analysis of various risk-related quantities in one single mathematical function - the Gerber-Shiu expected discounted penalty function, or Gerber-Shiu function in short. The Gerber-Shiu function is known to possess many nice properties, at least in the case of the classical compound Poisson risk model. For example, upon the introduction of a dividend barrier strategy, it was shown by Lin et al. (2003) and Gerber et al. (2006) that the Gerber-Shiu function with a barrier can be expressed in terms of the Gerber-Shiu function without a barrier and the expected value of discounted dividend payments. This result is the so-called dividends-penalty identity, and it holds true when the surplus process belongs to a class of Markov processes which are skip-free upwards. However, one stringent assumption of the model considered by the above authors is that all the interclaim times and the claim sizes are independent, which is in general not true in reality. In this thesis, we propose to analyze the Gerber-Shiu functions under various dependent structures. The main focus of the thesis is the risk model where claims follow a Markovian arrival process (MAP) (see, e.g., Latouche and Ramaswami (1999) and Neuts (1979, 1989)) in which the interclaim times and the claim sizes form a chain of dependent variables. The first part of the thesis puts emphasis on certain dividend strategies. In Chapter 2, it is shown that a matrix form of the dividends-penalty identity holds true in a MAP risk model perturbed by diffusion with the use of integro-differential equations and their solutions. Chapter 3 considers the dual MAP risk model which is a reflection of the ordinary MAP model. A threshold dividend strategy is applied to the model and various risk-related quantities are studied. Our methodology is based on an existing connection between the MAP risk model and a fluid queue (see, e.g., Asmussen et al. (2002), Badescu et al. (2005), Ramaswami (2006) and references therein). The use of fluid flow techniques to analyze risk processes opens the door for further research as to what types of risk model with dependency structure can be studied via probabilistic arguments. In Chapter 4, we propose to analyze the Gerber-Shiu function and some discounted joint densities in a risk model where each pair of the interclaim time and the resulting claim size is assumed to follow a bivariate phase-type distribution, with the pairs assumed to be independent and identically distributed (i.i.d.). To this end, a novel fluid flow process is constructed to ease the analysis. In the classical Gerber-Shiu function introduced by Gerber and Shiu (1998), the random variables incorporated into the analysis include the time of ruin, the surplus prior to ruin and the deficit at ruin. The later part of this thesis focuses on generalizing the classical Gerber-Shiu function by incorporating more random variables into the so-called penalty function. These include the surplus level immediately after the second last claim before ruin, the minimum surplus level before ruin and the maximum surplus level before ruin. In Chapter 5, the focus will be on the study of the generalized Gerber-Shiu function involving the first two new random variables in the context of a semi-Markovian risk model (see, e.g., Albrecher and Boxma (2005) and Janssen and Reinhard (1985)). It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation, and some discounted joint densities involving the new variables are derived. Chapter 6 revisits the MAP risk model in which the generalized Gerber-Shiu function involving the maximum surplus before ruin is examined. In this case, the Gerber-Shiu function no longer satisfies a defective renewal equation. Instead, the generalized Gerber-Shiu function can be expressed in terms of the classical Gerber-Shiu function and the Laplace transform of a first passage time that are both readily obtainable. In a MAP risk model, the interclaim time distribution must be phase-type distributed. This leads us to propose a generalization of the MAP risk model by allowing for the interclaim time to have an arbitrary distribution. This is the subject matter of Chapter 7. Chapter 8 is concerned with the generalized Sparre Andersen risk model with surplus-dependent premium rate, and some ordering properties of certain ruin-related quantities are studied. Chapter 9 ends the thesis by some concluding remarks and directions for future research.
144

Contracting under Heterogeneous Beliefs

Ghossoub, Mario 25 May 2011 (has links)
The main motivation behind this thesis is the lack of belief subjectivity in problems of contracting, and especially in problems of demand for insurance. The idea that an underlying uncertainty in contracting problems (e.g. an insurable loss in problems of insurance demand) is a given random variable on some exogenously determined probability space is so engrained in the literature that one can easily forget that the notion of an objective uncertainty is only one possible approach to the formulation of uncertainty in economic theory. On the other hand, the subjectivist school led by De Finetti and Ramsey challenged the idea that uncertainty is totally objective, and advocated a personal view of probability (subjective probability). This ultimately led to Savage's approach to the theory of choice under uncertainty, where uncertainty is entirely subjective and it is only one's preferences that determine one's probabilistic assessment. It is the purpose of this thesis to revisit the "classical" insurance demand problem from a purely subjectivist perspective on uncertainty. To do so, we will first examine a general problem of contracting under heterogeneous subjective beliefs and provide conditions under which we can show the existence of a solution and then characterize that solution. One such condition will be called "vigilance". We will then specialize the study to the insurance framework, and characterize the solution in terms of what we will call a "generalized deductible contract". Subsequently, we will study some mathematical properties of collections of vigilant beliefs, in preparation for future work on the idea of vigilance. This and other envisaged future work will be discussed in the concluding chapter of this thesis. In the chapter preceding the concluding chapter, we will examine a model of contracting for innovation under heterogeneity and ambiguity, simply to demonstrate how the ideas and techniques developed in the first chapter can be used beyond problems of insurance demand.
145

Actuarial Inference and Applications of Hidden Markov Models

Till, Matthew Charles January 2011 (has links)
Hidden Markov models have become a popular tool for modeling long-term investment guarantees. Many different variations of hidden Markov models have been proposed over the past decades for modeling indexes such as the S&P 500, and they capture the tail risk inherent in the market to varying degrees. However, goodness-of-fit testing, such as residual-based testing, for hidden Markov models is a relatively undeveloped area of research. This work focuses on hidden Markov model assessment, and develops a stochastic approach to deriving a residual set that is ideal for standard residual tests. This result allows hidden-state models to be tested for goodness-of-fit with the well developed testing strategies for single-state models. This work also focuses on parameter uncertainty for the popular long-term equity hidden Markov models. There is a special focus on underlying states that represent lower returns and higher volatility in the market, as these states can have the largest impact on investment guarantee valuation. A Bayesian approach for the hidden Markov models is applied to address the issue of parameter uncertainty and the impact it can have on investment guarantee models. Also in this thesis, the areas of portfolio optimization and portfolio replication under a hidden Markov model setting are further developed. Different strategies for optimization and portfolio hedging under hidden Markov models are presented and compared using real world data. The impact of parameter uncertainty, particularly with model parameters that are connected with higher market volatility, is once again a focus, and the effects of not taking parameter uncertainty into account when optimizing or hedging in a hidden Markov are demonstrated.
146

An introduction to Gerber-Shiu analysis

Huynh, Mirabelle January 2011 (has links)
A valuable analytical tool to understand the event of ruin is a Gerber-Shiu discounted penalty function. It acts as a unified means of identifying ruin-related quantities which may help insurers understand their vulnerability ruin. This thesis provides an introduction to the basic concepts and common techniques used for the Gerber-Shiu analysis. Chapter 1 introduces the insurer's surplus process in the ordinary Sparre Andersen model. Defective renewal equations, the Dickson-Hipp transform, and Lundberg's fundamental equation are reviewed. Chapter 2 introduces the classical Gerber-Shiu discounted penalty function. Two framework equations are derived by conditioning on the first drop in surplus below its initial value, and by conditioning on the time and amount of the first claim. A detailed discussion is provided for each of these conditioning arguments. The classical Poisson model (where interclaim times are exponentially distributed) is then considered. We also consider when claim sizes are exponentially distributed. Chapter 3 introduces the Gerber-Shiu function in the delayed renewal model which allows the time until the first claim to be distributed differently than subsequent interclaim times. We determine a functional relationship between the Gerber-Shiu function in the ordinary Sparre Andersen model and the Gerber-Shiu function in the delayed model for a class of first interclaim time densities which includes the equilibrium density for the stationary renewal model, and the exponential density. To conclude, Chapter 4 introduces a generalized Gerber-Shiu function where the penalty function includes two additional random variables: the minimum surplus level before ruin, and the surplus immediately after the claim before the claim causing ruin. This generalized Gerber-Shiu function allows for the study of random variables which otherwise could not be studied using the classical definition of the function. Additionally, it is assumed that the size of a claim is dependant on the interclaim time that precedes it. As is done in Chapter 2, a detailed discussion of each of the two conditioning arguments is provided. Using the uniqueness property of Laplace transforms, the form of joint defective discounted densities of interest are determined. The classical Poisson model and the exponential claim size assumption is also revisited.
147

Directional Control of Generating Brownian Path under Quasi Monte Carlo

Liu, Kai January 2012 (has links)
Quasi-Monte Carlo (QMC) methods are playing an increasingly important role in computational finance. This is attributed to the increased complexity of the derivative securities and the sophistication of the financial models. Simple closed-form solutions for the finance applications typically do not exist and hence numerical methods need to be used to approximate their solutions. QMC method has been proposed as an alternative method to Monte Carlo (MC) method to accomplish this objective. Unlike MC methods, the efficiency of QMC-based methods is highly dependent on the dimensionality of the problems. In particular, numerous researches have documented, under the Black-Scholes models, the critical role of the generating matrix for simulating the Brownian paths. Numerical results support the notion that generating matrix that reduces the effective dimension of the underlying problems is able to increase the efficiency of QMC. Consequently, dimension reduction methods such as principal component analysis, Brownian bridge, Linear Transformation and Orthogonal Transformation have been proposed to further enhance QMC. Motivated by these results, we first propose a new measure to quantify the effective dimension. We then propose a new dimension reduction method which we refer as the directional method (DC). The proposed DC method has the advantage that it depends explicitly on the given function of interest. Furthermore, by assigning appropriately the direction of importance of the given function, the proposed method optimally determines the generating matrix used to simulate the Brownian paths. Because of the flexibility of our proposed method, it can be shown that many of the existing dimension reduction methods are special cases of our proposed DC methods. Finally, many numerical examples are provided to support the competitive efficiency of the proposed method.
148

Economic Pricing of Mortality-Linked Securities

Zhou, Rui January 2012 (has links)
In previous research on pricing mortality-linked securities, the no-arbitrage approach is often used. However, this method, which takes market prices as given, is difficult to implement in today's embryonic market where there are few traded securities. In particular, with limited market price data, identifying a risk neutral measure requires strong assumptions. In this thesis, we approach the pricing problem from a different angle by considering economic methods. We propose pricing approaches in both competitive market and non-competitive market. In the competitive market, we treat the pricing work as a Walrasian tâtonnement process, in which prices are determined through a gradual calibration of supply and demand. Such a pricing framework provides with us a pair of supply and demand curves. From these curves we can tell if there will be any trade between the counterparties, and if there will, at what price the mortality-linked security will be traded. This method does not require the market prices of other mortality-linked securities as input. This can spare us from the problems associated with the lack of market price data. We extend the pricing framework to incorporate population basis risk, which arises when a pension plan relies on standardized instruments to hedge its longevity risk exposure. This extension allows us to obtain the price and trading quantity of mortality-linked securities in the presence of population basis risk. The resulting supply and demand curves help us understand how population basis risk would affect the behaviors of agents. We apply the method to a hypothetical longevity bond, using real mortality data from different populations. Our illustrations show that, interestingly, population basis risk can affect the price of a mortality-linked security in different directions, depending on the properties of the populations involved. We have also examined the impact of transitory mortality jumps on trading in a competitive market. Mortality dynamics are subject to jumps, which are due to events such as the Spanish flu in 1918. Such jumps can have a significant impact on prices of mortality-linked securities, and therefore should be taken into account in modeling. Although several single-population mortality models with jump effects have been developed, they are not adequate for trades in which population basis risk exists. We first develop a two-population mortality model with transitory jump effects, and then we use the proposed mortality model to examine how mortality jumps may affect the supply and demand of mortality-linked securities. Finally, we model the pricing process in a non-competitive market as a bargaining game. Nash's bargaining solution is applied to obtain a unique trading contract. With no requirement of a competitive market, this approach is more appropriate for the current mortality-linked security market. We compare this approach with the other proposed pricing method. It is found that both pricing methods lead to Pareto optimal outcomes.
149

To Evaluate the Small and Medium Enterprise Credit Guarantee Schemes--K Bank for Examples

Yu, Pei-yu 14 July 2007 (has links)
In recent years, Small and Medium Enterprise Credit Guarantee Fund(SMEG) has been actively promoting organization restructuring, boosted its business unceasingly, and impelled each innovation guarantee service actively, in order to display the best benefit. This paper combines C. J. Kuo.¡]2003¡^market-based risk neutral model with actuarial valuation principles, using above observable rate discrepancy¡]i.e. one for that guaranteed by SMEG, and the other for non-guaranteed portion¡^to evaluate the credit risk SMEG assumed from guaranteed schemes, then derives the optimal guaranty fees model. The major research finding shows fixed as follows conclusion: 1.The real prepayment in subrogation is close to the total guaranty fees estimated by proposed model. 2.Applying this model can help that the credit risk degree SMEG takes reacts to the guarantee premium, and that SMEG control risk balance revenue and expenditure. This indicates that the model can reflect market information, and thus is easily applicable and referable by SMEG to establish the structure of guaranty fees as well as to reach an integrated risk management.
150

The Risk Evaluation of Credit Guarantee and Actuarial Guarantee Fee of Loans to SMEs

Chen, Chin-ming 08 October 2008 (has links)
One of the most important government policies to support and satisfy financing needs for marginal enterprises or special sectors in economic system is to provide credit guarantee. In Taiwan, while Small and Medium Enterprise Credit Guarantee Fund of Taiwan (SMEG) had been established to help small and medium enterprises (SMEs) acquiring bank loans successfully by providing credit guarantee, there is still a need to set up an appropriate credit rating systems for SMEs. This research proposes three kinds of assessment models to the credit risks of SMEG. While Model one employs a firm¡¦s financial performance, substituting debt level and estimated asset value and volatility into the model to derive probability of default (PD). Model two and three utilize a firm¡¦s risk premium observed from the loan rate to estimate credit level. The former belongs to the application of structure-form approach in the credit risk management model, on the other hand, the latter is the reduced-form approach. On the structure-form approach, due to the difficulties in accessing SMEs¡¦ public trade information in Taiwan, we adopt the Private Firm Model developed by Moody's KMV Company. We had also improved this PD evaluation model by taking some peculiar operating characteristics of Taiwan¡¦s SMEs into consideration. On the reduced-form approach, we apply risk-neutral model to estimate a firm¡¦s PD, which then been utilizing to evaluate the expected value of subrogation payment in the case of default. This can further go deeper to calculate the guarantee fee of a loan. The processes used in this model is same as that of actuarial methodology being used to determine the premium of a term insurance. The three credit risk management models proposed in this research are designed to reflect the market information of a SME, and to the applicability of operating in real world case. The empirical results indicate they could adequately reflect the risk levels of the SMEs to a certain extent. We hope to provide the SMEG with a method of evaluating credit risk of SMEs to establish a fairer and more reasonable guarantee fee, and contribute in enhancing and managing credit guarantee mechanism in Taiwan.

Page generated in 0.6663 seconds