• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • Tagged with
  • 20
  • 20
  • 20
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acyl Carrier Protein Interacts With Melittin

Ernst-Fonberg, Mary L., Williams, Sande G., Worsham, Lesa M.S. 18 September 1990 (has links)
Acyl carrier protein (ACP) from Escherichia coli has been shown to form complexes with melittin, a cationic peptide from bee venom. ACP is a small (Mr 8847), acidic, Ca2+-binding protein, which possesses some characteristics resembling those of regulatory Ca2+-binding proteins including interaction with melittin. Complexing between melittin and ACP which occurred both in the presence and absence of Ca2+ was evident by chemical cross-linking the two peptides, fluorescence changes (including anisotropy measurements), and inhibition by melittin of the activity of a nonaggregated fatty acid synthetase from Euglena. Also, anti-Apis mellifera antibodies which contained antibodies against melittin specifically inhibited the same enzyme system activity relative to non-immune IgG.
2

Behavior of Acyl Carrier Proteins on Western Blots

Worsham, Lesa M., Tucker, Margie, Lou Ernst-Fonberg, M. 02 April 1990 (has links)
Acyl carrier proteins (ACPs) from Escherichia coli and Euglena were analyzed on Western blots using rabbit antibodies raised against E. coli ACP. Euglena ACP, unlike that from E. coli, behaves upon electrophoresis under denaturing conditions as its size would predict. Oligomeric forms of both ACPs were evident on Western blots, but the bacterial ACP had more tendency to aggregate. That the oligomeric forms were not due to impurities was shown by their regeneration from low-Mr protein, reaction with antibodies isolated from Iow-Mr protein, and by molecular weight determination of the ACP by low-angle laser light scattering.
3

Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis / Development of potential irreversible/reversible inhibitors of the enoyl-ACP reductase FabI in S. aureus/ E. coli and of the thiolase FadA5 in M. tuberculosis

Ferraro, Antonio January 2021 (has links) (PDF)
Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidität und Mortalität verbunden. Die Letalitätsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Prioritätenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsfähig gegenüber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung für die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend nötig, um mit bisherigen Resistenzen umgehen zu können. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell für das Überleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schlüsselenzym der Fettsäuresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die für den Aufbau der Zellmembran nötig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor für den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads“ hergestellt. Hierbei wurde die Verknüpfung zwischen dem Pyridon-Grundgerüst und der elektrophilen Gruppe sowie die über den Ether verknüpften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivität am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivität im mittleren nanomolaren Bereich auf. Zusätzlich wurde Verbindung 32 in einem sogenannten „jump-dilution“-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivität der eingesetzten „warheads“ wurde gegenüber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminosäure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgeführt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gewünschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads“ aufgrund der großen Entfernung (6 Å zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zusätzlich wurden die physikochemischen Eigenschaften (Stabilität, Wasserlöslichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn häufigsten Todesursachen weltweit gehört. Das Bakterium kann das im menschlichen Körper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target für neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gewünschten „warhead“ synthetisiert und hinsichtlich ihrer inhibitorischen Aktivität gegenüber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung über die eingesetzten „warheads“ an die Thiolase FadA5. / Antimicrobial resistance poses a global challenge and is associated with high morbidity and mortality. The case fatality rate of infections caused by multidrug-resistant pathogens continues to be on the rise, causing the WHO to compile a priority pathogens list that is supposed to advance the development of new antimicrobial compounds. The list is mainly comprised of gramnegative bacteria, since these are especially resilient to many antibiotics. This is due to their cellular structure and various mechanisms of resistance. Some grampositive bacteria are also a danger to public health and are therefore part of this list. Consequently, there is an urgent need for the development of new antiinfectives with novel modes of action, so that the current resistance situation can be adequately addressed. This work is concerned with the development and synthesis of covalent reversible inhibitors of the enoyl-ACP reductase FabI (Staphylococcus aureus, Escherichia Coli) and the thiolase FadA5 (Mycobacterium tuberculosis). Both enzymes are critically important for the survival of the respective bacteria. FabI is an essential and rate determining enzyme of the type II fatty acid synthesis of various bacteria. A number of important phospholipids required for the cell membrane are biosynthesized via this metabolic pathway. Schiebel et al. were able to develop and characterize a potent inhibitor for S. aureus and E. Coli. Using this compound as a starting point, a library of compounds carrying various “warheads” was synthesized. Further structural variations were introduced by using different linkers between the pyridone scaffold and the electrophilic group as well as diverse aromatic rings connected via the ether bridge. These compounds were assayed concerning their inhibitory activity at the respective enzyme. Of these, substances 32 and 33 showed good inhibition of the enzyme, prompting the determination of the IC50 values. The two substances were able to reduce enzymatic activity by 50% at nanomolar concentration levels. In addition, substance 32 was characterized concerning its ability to covalently inhibit its molecular target by means of the so-called jump dilution assay. This experiment showed no covalent inhibition of the target enzyme. The individual reactivity of the warhead moieties present in the library was determined against a synthetic tripeptide by using a LC/MS iontrap system. All the examined compounds showed no reaction with the nucleophilic amino acid tyrosine contained in the tripeptide at significant levels, which indicates that its nucleophilicity is insufficient at the pH of the assay (pH = 8,2 and 10,8, respectively). Crystallization experiments were conducted to ascertain the binding mode of the compounds. The crystal structures showed the substances binding to the enzyme in the desired pose, yet a covalent modification of tyrosine146 remains unlikely due to the large distance (6 Å) between the electrophilic moiety and the amino acid. Additionally, some physicochemical properties (Stability, aqueous solubility and logP) of compounds 32 and 33 were characterized. M. tuberculosis is the causative pathogen of the globally occurring infectious disease tuberculosis, which belongs to the 10 most frequently occurring causes of death worldwide. The germ is able to metabolize the cholesterol present in the human body and uses its degradation products as an important carbon source. The thiolase FadA5 is involved in this metabolic pathway and was identified as a potentially innovative target for novel antibiotics. Docking studies enabled the identification of two potential lead structures for inhibitors of FadA5. In this work, the proposed structures carrying the desired warheads were synthesized and characterized concerning their inhibitory activity at the target enzyme. The target compounds showed no significant inhibition or covalent binding to FadA5.
4

Virtuelles Screening nach einer neuen Inhibitorklasse der Enoyl-ACP-Reduktase InhA aus Mycobacterium tuberculosis / Virtual screening for a new inhibitor class of the enoyl-ACP-reductase InhA of Mycobacterium tuberculosis

Waltenberger, Constanze Ricarda Maria January 2012 (has links) (PDF)
Die Zahl der Tuberkuloseerkrankungen ist in den letzten Jahrzehnten weltweit gestiegen. Da es an innovativen Antituberkulotika mangelt, werden nach wie vor Medikamente der ersten Generation eingesetzt. Das wachsende Problem sind multi-resistente und extrem-resistente Bakterienstämme, die kaum oder gar nicht auf die medikamentöse Therapie ansprechen. Charakteristisch für M. tuberculosis ist eine dicke Zellwand. Der Aufbau der Zellwand ermöglicht es dem Bakterium in den Makrophagen zu persistieren und sich dort zu vermehren. Die Zellwand ist reich an Mykolsäuren und so wenig durchlässig für Fremdstoffe. Das mykobakterielle Zellwandskelett kann man in zwei Teile unterteilen, den Zellwandkern und die äußere Lipidhülle. Die freien Lipide der äußeren Lipidhülle dienen als Signalmoleküle im Krankheitsverlauf und interkalieren mit den Mykolsäuren des Zellwandkerns. M. tuberculosis besitzt für die Fettsäurebiosynthese zwei Enzymkomplexe: Die Typ-I-Fettsäuresynthase, die auch in Säugetieren zu finden ist, produziert Fettsäuren von C16- bis C26-Kettenlänge, die dann in der Typ-II-Fettsäuresynthase (FAS-II) zu Meromykolsäuren verlängert werden. Im Synthesezyklus des FAS-II sind mehrere monofunktionale Enzyme hintereinander geschaltet. Wird eines dieser Enzyme in seiner Funktion gestört, kumulieren Zwischenprodukte und benötigte Zellwandlipide können nicht synthetisiert werden. In der Folge wird die Zellwand instabil und das Bakterium stirbt. Die mykobakterielle Lipidbiosynthese ist somit ein ideales Target für die Entwicklung neuer Antituberkulotika. Ziel dieser Arbeit war es, eine neue Inhibitorklasse des FAS-II Enzyms InhA des M. tuberculosis mittels virtuellem Screening zu finden. Für das virtuelle Screening wurden drei aufeinander aufbauende Pharmakophorhypothesen entwickelt und mit diesen zwei unabhängige Datenbanken durchsucht. Als Grundlage für die Berechnungen des virtuellen Screenings diente die PDB Röntgenkristallstruktur 2h7m mit dem Liganden 1-Cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidin-3-carboxamid. Für die Erstellung der Pharmakophorhypothesen wurden zuerst die Strukturen des Enzyms mit und ohne Ligand bezüglich ihrer Konformationsunterschiede vor allem im Bereich der Bindetasche analysiert. Als nächstes wurden die Wechselwirkungen des Liganden mit den Aminosäuren der Bindetasche und dem Cofaktor näher analysiert und die verschiedenen Wechselwirkungsarten hinsichtlich ihrer Relevanz für eine inhibitorische Aktivität beurteilt. Schließlich wurde eine Bindetaschenanalyse durchgeführt und Hotspots für unterschiedliche chemische Funktionalitäten berechnet. Für das Datenbankenscreening wurden das ZINC 'drug-like' Subset (2005) und CCGs MOE 2006 Vendor Compound 3D Collection verwendet, beides Datenbanken exklusiv kommerziell erhältlicher Verbindungen. Das ZINC 'drug-like' Subset wurde über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert. Von den verbleibenden Verbindungen wurde eine Konformerendatenbank berechnet. Die MOE 2006 Vendor Compound 3D Collection lag bereits als Konformerendatenbank vor und wurde für das Screening 'as-is' verwendet. Mit den Pharmakophorhypothesen I und II wurde das reduzierte ZINC 'drug-like' Subset gescreent. Für die Treffer wurden Fingerprints berechnet, sie danach mithilfe des Tanimotokoeffizienten nach ihrer Ähnlichkeit in Cluster eingeteilt und visuell analysiert; 149 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die MOE Konformerendatenbank wurde ebenso über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert und mit der Pharmakophorhypothese III gescreent, 28 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die Dockingsimulationen wurden mit den Programmen MOE Dock und Autodock durchgeführt. Die Ergebnisse wurden numerisch ausgewertet und innerhalb der Bindetasche relativ zur jeweiligen zugrunde liegenden Pharmakophorhypothese visuell analysiert; 27 Substanzen wurden schließlich für die Testungen ausgewählt. Die Testungen erfolgten mit einem enzymatischen Assay und einem Assay an attenuierten M. tuberculosis Für die Etablierung des enzymatischen Assays wurde das Enzym InhA mittels Vektortransformation in E. coli überexprimiert und säulenchromatographisch aufgereinigt. Das Substrat 2-trans-Octenoyl-Coenzym A wurde synthetisiert. Von den 27 ausgewählten Substanzen waren 9 im Handel erhältlich und wurden schließlich auf ihre inhibitorische Aktivität getestet. Es wurden ein Thiazolidin-2,4-dion, ein 2-Thioxoimidazolidin-4-on und ein Sulfonamid als aktive Substanzen gefunden. / Worldwide the number of tuberculosis cases has increased in the decades. Since there is a lack of innovative anti-tuberculosis drugs, the first-generation drugs are still used as gold standard. Therefore, strains of mycobacteria, that respond only little or not at all to drug therapy, picture a growing problem. Characteristic of M. tuberculosis is its thick cell wall. The structure of the cell wall allows the bacterium to persist in the macrophages and to multiply there. The cell wall is rich in mycolic acids and, in this, little permeable to xenobiotics. The mycobacterial cell wall skeleton can be divided into two parts, the cell wall core and the outer lipid envelope. The free lipids of the outer lipid envelope serve as signalling molecules in course of the disease, and intercalate with the mycolic acids of the cell wall core. For fatty acid biosynthesis M. tuberculosis has two enzyme complexes: the type I fatty acid synthase, which is also found in mammals, produces fatty acids of C16 to C26 chain length; subsequently, these are extended to meromycolic acids in the type II fatty acid synthase (FAS II). The synthesis cycle of FAS-II consists of mono-functional enzymes that build up on each other. If one of these enzymes is disturbed in its functionality, intermediates accumulate and required cell wall lipids can not be synthesized. As a result, the cell wall turns unstable and the bacterium dies. Therefore, the mycobacterial lipid biosynthesis is an ideal target for developing new antituberculous drugs. The aim of this study was to develop a new inhibitor class of the mycobacterial FAS-II enzyme InhA by means of virtual screening. For the virtual screening three consecutive pharmacophore hypotheses were developed, and with these two independent databases were screened. As a basis for the calculations of the virtual screening the PDB X-ray crystal structure 2h7m with the ligand 1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide was used. In order to construct the pharmacophore hypotheses, first, the structures of the enzyme with and without a ligand were analyzed for their conformational differences, in particular with respect to the geometry of the binding pocket. Next, the interactions of the ligand with the amino acids of the binding pocket and with the cofactor were analyzed in detail; thereby, the different types of interactions were assessed in terms of their relevance for the inhibitory activity. Finally, a hot spot analysis of the active site was carried out for different chemical functionalities. The ZINC 'drug-like' subset (2005) and CCG's 2006 Vendor MOE 3D compound collection were used for the database screening, both being databases of commercially available compounds. The ZINC 'drug-like' subset was numerically reduced by a hierarchical filter customized for InhA; of the remaining compounds a database of conformers was calculated. The MOE 2006 Vendor 3D Compound Collection was already available as a conformer database. The reduced ZINC 'drug-like' subset was screened with the pharmacophore hypotheses I and II. After calculating fingerprints the hits were clustered according to their similarity using the Tanimoto coefficient and visually analyzed; 149 compunds were selected for the docking simulations. The MOE conformers database also was numerically reduced by a hierarchical filter customized for InhA, and then screened with the pharmacophore hypothesis III, 28 compounds were chosen for the docking simulations. The docking simulations were performed with the programs MOE Dock and Autodock. The results were evaluated numerically, and analyzed visually within the binding pocket relative to the respective underlying pharmacophore hypothesis. Finally, 27 substances were selected for testing. The tests were carried out using an enzymatic assay and an assay on attenuated M. tuberculosis. For establishing the enzymatic assay, the enzyme InhA was overexpressed using vector transformation into E. coli and purified by column chromatography. The substrate 2-trans-octenoyl-coenzyme A was synthesized. Of the 27 selected compounds 9 substances were commercially available and were tested for their inhibitory activity. A thiazolidine-2,4-dione, a 2-thioxoimidazolidine-4-one and a sulfonamide were found to be active.
5

Developing a diagnostic tool for acyl carrier proteins through trypsinolysis, reverse-phase chromatography and native chemical ligation

Reyes, Graciela, 1957- 06 January 2011 (has links)
Polyketide biosynthesis is a field that has had tremendous advances in the past 50 years. The understanding of the mechanisms is updated as investigations delve into domain interactions of these microbial natural products. Although numerous polyketides are known, similarities in the sequence of product generation can be used as templates for further exploration of enzymatic activity. The focus of studies recently has been towards developing protocols to manipulate the natural products resulting in medicinally important manufactured products. This investigation examined the mechanism of the acyl carrier protein (ACP) module involved in biosynthesis. / text
6

Untersuchungen von Thiazolidindionen und verwandten Fünfringheterozyklen als Leitstruktur potenzieller Inhibitoren der Enoyl-ACP-Reduktase InhA des Mycobacterium tuberculosis / Analysis of thiazolidindiones and related five membered heterocycles as lead structures of novel inhibitors of enoyl-ACP-reductase InhA from Mycobacterium tuberculosis

Vogel, Simon January 2015 (has links) (PDF)
Weltweit zählt die Tuberkulose zu den tödlichsten und am weitesten verbreiteten Infektionskrankheiten. Missstände in der ohnehin komplexen Therapie einerseits und fehlende Entwicklung neuartiger adäquater Wirkstoffe andererseits, führten zur Entstehung von multi- und sogar total-resistenten Keimen. Der Haupterreger ist das Mycobacterium tuberculosis. Charakteristisch für Mykobakterien ist eine dicke und undurchlässige wachsartige Zellwand mit einem großen Anteil an bestimmten Fettsäuren. Die mykobakterielle Biosynthese dieser Fettsäuren unterscheidet sich stark von eukaryotischen Zellen. Die selektive Beeinflussung dieses Systems führt zu nicht überlebensfähigen Mykobakterien und stellt somit ein idealer Angriffspunkt für Arzneistoffe dar. Die vorliegende Arbeit befasst sich mit der Entwicklung neuartiger direkter Hemmstoffe von InhA, einem für den Zellwandaufbau des Mycobacterium tuberculosis essenziellem Enzym. Es wurden zwei photometrische gekoppelt-enzymatische Assay-Systeme im 96-Well-Format entwickelt, die sich das Absorptions- bzw. Fluoreszenzverhalten des Coenzyms NADH zu Nutze machen. Das hierzu benötigte Enzym InhA wurde überexprimiert und aufgereinigt. Mehrere Synthesemethoden für das im Testverfahren verwendete Substrat 2-trans-Octenoyl-CoA (2toCoA) wurden etabliert. Die etablierten Assay-Systeme wurden mit Hilfe von Positivkontrollen validiert. Grundlegende Experimente zur Errichtung einer substratunabhängigen orthogonalen Methode mittels MST wurden getätigt. Basierend auf den Ergebnissen eines in Vorarbeiten durchgeführten virtuellen Screenings wurden erste potenzielle Inhibitoren kommerziell erworben und getestet. Nachfolgend wurde mit der Synthese von Derivaten begonnen, welche auf iterativem Wege optimiert wurden (Testung – Docking – Synthese neuer Derivate). Hierdurch wurde eine umfassende Substanzbibliothek bestehend aus insgesamt 254 Verbindungen aufgebaut. Diese setzte sich aus unterschiedlich substituierten Thiazolidin-2,4-dionen- und Thiazolin-2-on-Derivaten, Derivaten der ähnlich strukturierten Fünfring-Heterozyklen Rhodanine, Thiohydantoine und Hydantoine und weiteren Strukturklassen bestehend aus Biphenylether-, Pyrrolidoncarboxamid-, Pyridon- und Sulfonamid-Derivaten zusammen. Die Verbindungen wurden entweder selbst synthetisiert, kommerziell erworben oder von Kooperationspartnern bezogen. Neben der Etablierung zuverlässiger und effizienter Syntheserouten stand hierbei ebenso die strukturelle Aufklärung der stereochemischen Verhältnisse der Produkte im Mittelpunkt. Die Verbindungen der aufgebauten Substanzbibliothek wurden mit dem etablierten InhA-Testsystem auf ihre inhibitorischen Eigenschaften gegenüber InhA untersucht. Soweit möglich wurden Struktur-Aktivitätsbeziehungen abgeleitet. Insbesondere einige disubstituierte Thiazolidindione zeigten eine schwache Hemmung von bis zu 25 %. Die zur Aufklärung des Inhibitionsmechanismus durchgeführten Experimente deuten auf eine unkompetitive Hemmung hin. Bei den direkten Testungen an Mykobakterien konnten die inhibitorischen Eigenschaften hingegen nicht bestätigt werden. Weiterhin wurden Testungen an Cystein- und Serin-Proteasen von Erregern anderer Infektionskrankheiten durchgeführt. Das Thiazolinon SV102 wurde hierbei als nicht-kompetitiver Hemmstoff von Cathepsin B mit einem Ki-Wert von 1.3 µM identifiziert. Die Synthese und Testung weiterer Thiazolin-2-on-Derivate sowie Cokristallisationsversuche mit Cathepsin B sind somit in Betracht zu ziehen. Die getesteten Thiazolidindion-Derivate der Substanzbibliothek zeigten hierbei mittelstarke bis gute Hemmeigenschaften, die ebenfalls an den Erregern beobachtbar waren. Relativiert werden diese vielversprechenden Ergebnisse allerdings durch eine ebenfalls zu beobachtende Zytotoxizität. Weiterhin konnte eine antibakterielle Wirkung der untersuchten Verbindungen in zellulären Assay-Systemen nicht gezeigt werden. Abschließend wurde die Eignung der Thiazolidindione und verwandter Fünfringheterozyklen als Leitstruktur für potenzielle InhA-Inhibitoren, aber auch die Eignung dieser Verbindungsklasse als potenzielle Leitstruktur per se diskutiert. / Tuberculosis is one of the most deadly infectious diseases and it is highly prevalent world-wide. The issues arising from the complexity of the current treatments schemes as well as the lacking development of effective new drugs have led to the formation of multi- or even totally drug-resistant strains of Mycobacterium tuberculosis which is known as the major microbial species causing tuberculosis. Mycobacteria are characterized by a unique, thick and waxy cell wall that functions as a nearly impermeable barrier due to its high concentration of mycolic acids. The biosynthesis of these fatty acids requires the presence of a specific set of mycobacterial enzymes that differ markedly from their eukaryotic counterparts. Disturbance in the proper formation of this essential cell wall unvariably interferes with mycobacterial survival. Thus, the mycobacterial fatty acid synthesis pathway is an attractive target for the development of selective new drugs against Mycobacterium tuberculosis. The aim of this work was the synthesis and optimization of thiazolidindiones and related five membered heterocycles as lead structures for the development of novel, direct inhibitors of InhA, an essential enzyme in the biosynthesis of mycolic acids. Two coupled photometric enzyme assays that monitor the absorption of the involved cofactor NADH were developed in a 96-well-plate format. For this purpose, the enzyme InhA was recombinantly expressed and purified from E.coli. Several routes of synthesis for its substrate 2-trans-octenoyl-CoA were established. Assay systems were validated by characterizing positive controls known from the literature, and an orthogonal analysis method was introduced by using microscale thermophoresis. Thiazolidindiones as lead compound structure were discovered by performing a virtual screening campaign in preliminary works. Several substances were commercially acquired and tested in the established InhA-assay-system. Based on these results the syntheses of further compounds were started and optimized in an iterative manner (testing – docking – synthesis of new derivatives). Thus, a large compound library of 254 substances was built up. It consists of different substituted thiazolidindiones, thiazolinons and related five membered heterocycles such as rhodanines, thiohydantoines and hydantoines as well as further compound classes, namely, derivatives of biphenylethers, pyrrolidoncarboxamides, pyridines and sulfonamides. The compounds were either synthesized, received from collaboration partners, or acquired commercially. Concerning the synthetic work, the focus was on developing effective routes of synthesis, elucidating reaction mechanisms and determining the stereochemical properties of the received products. The compound library was subsequently tested against InhA by using the previously established assay systems. As far as possible, structure-activity relationships were derived. In particular, some disubstitued thiazolidindiones showed moderate inhibitory properties of up to 25 % when tested against the purified enzyme. Kinetic experiments performed to obtain information about the mode of inhibition indicated that thiazolidinediones acted as uncompetitive inhibitors of InhA. However, these results could not be confirmed in direct measurements using mycobacteria. Further measurements against various cysteine- and serine-proteases were performed. The thiazolinone SV102 was identified as non-competitive inhibitor of cathepsin B (Ki = 1.3 µM). Consequently, synthesis of new derivates as well as co-crystallization experiments should be taken into consideration. Thiazolidinedione derivatives also showed proper inhibition of isolated proteases. This inhibitory activity also was also observed in direct measurements against trypanosoma and leishmania but was actually accompanied by a certain extent of cytotoxicity. Finally, the question was addressed of whether thiazolidindiones and related five membered heterocycles should be seen as a privileged scaffold in drug development, or just as promiscuous binders that should be excluded from drug discovery.
7

Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall / Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand

Merget, Benjamin January 2015 (has links) (PDF)
\textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. / \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen.
8

In silico structure-based optimisation of pyrrolidine carboxamides as Mycobacterium tuberculosis enoyl-ACP reductase inhibitors / In silico Struktur-basierte Optimierung von Pyrrolidin-Carbonsäureamiden als Mycobacterium tuberculosis Enoyl-ACP-Reduktase-Inhibitoren

Narkhede, Yogesh January 2018 (has links) (PDF)
The high infection rates and recent emergence of extremely drug resistant forms of Mycobacterium tuberculosis pose a significant challenge for global health. The NADH- dependent enoyl-ACP-reductase InhA of the type II mycobacterial fatty acid biosynthesis pathway is a well-validated target for inhibiting mycobacterial growth. InhA has been shown to be inhibited by a variety of compound series. Prominent classes of InhA inhibitors from literature include diaryl ethers, pyrrolidine carboxamides and arylamides which can be subjected to further development. Despite the progress in this area, very few compounds are in clinical development phase. The present work involves a detailed computational investigation of the binding modes and structure-based optimisation of pyrrolidine carboxamides as InhA inhibitors. With substituents of widely varying bulkiness, the pyrrolidine carboxamide dataset presented a challenge for prediction of binding mode as well as affinity. Using advanced docking protocols and in-house developed pose selection procedures, the binding modes of 44 compounds were predicted. The poses from docking were used in short molecular dynamics (MD) simulations to ascertain the dominant binding conformations for the bulkier members of the series. Subsequently, an activity-based classification strategy could be developed to circumvent the affinity prediction problems observed with this dataset. The prominent motions of the bound ligand and the active site residues were then ascertained using Essential Dynamics (ED). The information from ED and literature was subsequently used to design a total of 20 compounds that were subjected to extensive in-silico evaluations. Finally, the molecular determinants of rapid-reversible binding of pyrrolidine carboxamides were investigated using long MD simulations. / Hohe Infektionsraten und das Auftreten von multiresistenten Formen von Mycobacterium tuberculosis stellen eine große Herausforderung f ̈ ur das globale Gesundsheitswesen dar. Die NADH-abh ̈angige Enoyl-ACP-Reduktase des mykobakteriellen Fetts ̈aure-Biosynthesewegs II, InhA, ist ein gut validiertes Target zur Hemmung des mykobakteriellen Wachstums. Es wurde gezeigt, dass InhA durch eine Vielzahl von unterschiedlichen Verbindungs- klassen gehemmt wird. Zu den bekanntesten Klassen von InhA-Inhibitoren aus der Literatur geh ̈ oren Diphenylether, Pyrrolidincarboxamide und Arylamide, die zur weiteren Entwicklung verwendet werden k ̈onnen. Trotz der Fortschritte in diesem Bereich sind sehr wenige Verbindungen in einer klinischen Entwicklungsphase. Die vorliegende Arbeit beinhaltet eine detaillierte computergest ̈ utzte Untersuchung der Bindungsmodi und die strukturbasierte Optimierung von Pyrrolidincarboxamiden als InhA-Inhibitoren. Aufgrund von Substituenten mit stark variierendem Raumanspruch stellt der Pyrrolidin- carboxamid-Datensatz eine Herausforderung f ̈ ur die Vorhersage von Bindungsmodi und Affinitit ̈aten dar. Mit aufw ̈andigen Docking-Protokollen und speziell zu diesem Zweck entwickelten Posen-Auswahlverfahren wurden die Bindungsmodi f ̈ ur 44 Verbindungen vorhergesagt. Die Posen des Dockings wurden in kurzen Molekulardynamik (MD) Sim- ulationen verwendet, um die bevorzugten Bindungskonformationen f ̈ ur die r ̈ aumlich anspruchsvollen Vertreter des Datensatzes zu ermitteln. Anschließend konnte eine akt- ivit ̈atsbasierte Klassifizierungsstrategie entwickelt werden, um die in diesem Datensatz beobachteten Probleme in der Affinit ̈ atsvorhersage zu umgehen. Die wesentlichen Bewe- gungen des gebundenen Liganden und der Aminos ̈auren der Bindetasche wurden daraufhin mit Essential Dynamics (ED) ermittelt. Informationen aus der ED-Analyse und der Literatur wurden anschließend verwendet, um insgesamt 20 Verbindungen zu entwerfen, die umfangreichen in-silico-Bewertungen unterzogen wurden. Schließlich wurden die molekularen Determinanten der schnell-reversiblen Bindung von Pyrrolidincarboxamiden unter Verwendung von langen MD Simulationen untersucht.
9

Acyl-acyl carrier protein synthetases from bluegreen algae and plants / Acyl-Acyl Carrier Protein Synthetasen aus Blaualgen und Pflanzen

Kaczmarzyk, Danuta 29 April 2008 (has links)
No description available.
10

Structural Basis for Protein Recognition, Acyl-substrate Delivery, and Product Release by ACP in the Biosynthesis of Lipid A

Masoudi, S. Ali January 2014 (has links)
<p>Acyl-carrier-protein (ACP) is the principal transporter of fatty acids, coordinating acyl-transfer among a vast network of diverse enzymes and biochemical processes. ACP association with protein partners is thought to be exceedingly transient. This paradigm has posed challenges for understanding the molecular basis for acyl-delivery and dissociation. During biosynthesis of the lipid A component (endotoxin) of lipopolysaccharides, ACP shuttles acyl-intermediates thioester-linked to its 4'-phosphopantetheine arm among four acyltransferases: LpxA, LpxD, LpxL, and LpxM. LpxA and LpxD are essential cytoplasmic enzymes, which not only provide an excellent model system to study ACP-based interaction, but also offer an important therapeutic target for development of novel antibiotics. The current dissertation reports the crystal structures of three forms of <italic>Escherichia coli</italic> ACP engaging LpxD, which represent stalled substrate and breakage products along the reaction coordinate. The structures reveal the intricate interactions at the interface that optimally position ACP for acyl-delivery and directly involve the pantetheinyl group. Conformational differences among the stalled ACPs provide the molecular basis for the association-dissociation process. An unanticipated conformational shift of 4'-phosphopantetheine groups within the LpxD catalytic chamber reveals an unprecedented role of ACP in product release. Moreover, the crystal structure of <italic>E. coli</italic> LpxA in complex with one form of ACP (holo-ACP) is presented. The structure reveals three molecules of holo-ACP localize to the C-terminal domain of the LpxA homotrimer, and shows the functional role of this domain is two-fold: ACP recognition and nucleotide binding of UDP-GlcNAc. A comparison with the LpxD:ACP complexes uncovers that ACP utilizes different surface residues for recognition even amongst closely related acyltransferases, yet still relies on "electrostatic steering" for docking to its enzyme partner. Insights gleaned from the presented structures have provided not only a better understanding of ACP interaction with acyltransferases, but also has identified the "drugable molecular landscape" for the development of novel antibiotics against infective bacteria.</p> / Dissertation

Page generated in 0.0891 seconds