• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 3
  • Tagged with
  • 15
  • 15
  • 12
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Domaines et fouille d'opinion : une étude des marqueurs multi-polaires au niveau du texte / Domain Adaptation for Opinion Mining : A Study of Multi-polarity Words

Marchand, Morgane 04 March 2015 (has links)
Cette thèse s’intéresse à l’adaptation d’un classifieur statistique d’opinion au niveau du texte d’un domaine à un autre. Cependant, nous exprimons notre opinion différemment selon ce dont nous parlons. Un même mot peut ne pas désigner pas la même chose ou bien ne pas avoir la même connotation selon le thème de la discussion. Si ces mots ne sont pas détectés, ils induiront des erreurs de classification.Nous appelons donc marqueurs multi-polaires des mots ou bigrammes dont la présence indique une certaine polarité du texte entier, différente selon le domaine du texte. Cette thèse est consacrées à leur étude. Ces marqueurs sont détectés à l’aide d’un test du khi2 lorsque l’on dispose d’annotations au niveau du texte dans les deux domaines d’intérêt. Nous avons également proposé une méthode de détection semi-supervisé. Nous utilisons une collections de mots pivots auto-épurés afin d’assurer une polarité stable d’un domaine à un autre.Nous avons également vérifié la pertinence linguistique des mots sélectionnés en organisant une campagne d’annotation manuelle. Les mots ainsi validés comme multi-polaires peuvent être des éléments de contexte, des mots exprimant ou expliquant une opinion ou bien désignant l’objet sur lequel l’opinion est portée. Notre étude en contexte a également mis en lumière trois causes principale de changement de polarité : le changement de sens, le changement d’objet et le changement d’utilisation.Pour finir, nous avons étudié l’influence de la détection des marqueurs multi-polaires sur la classification de l’opinion au niveau du texte par des classifieurs automatiques dans trois cas distincts : adaptation d’un domaine source à un domaine cible, corpus multi-domaine, corpus en domaine ouvert. Les résultats de ces expériences montrent que plus le transfert initial est difficile, plus la prise en compte des marqueurs multi-polaires peut améliorer la classification, allant jusqu’à plus cinq points d’exactitude. / In this thesis, we are studying the adaptation of a text level opinion classifier across domains. Howerver, people express their opinion in a different way depending on the subject of the conversation. The same word in two different domains can refer to different objects or have an other connotation. If these words are not detected, they will lead to classification errors.We call these words or bigrams « multi-polarity marquers ». Their presence in a text signals a polarity wich is different according to the domain of the text. Their study is the subject of this thesis. These marquers are detected using a khi2 test if labels exist in both targeted domains. We also propose a semi-supervised detection method for the case with labels in only one domain. We use a collection of auto-epurated pivot words in order to assure a stable polarity accross domains.We have also checked the linguistic interest of the selected words with a manual evaluation campaign. The validated words can be : a word of context, a word giving an opinion, a word explaining an opinion or a word wich refer to the evaluated object. Our study also show that the causes of the changing polarity are of three kinds : changing meaning, changing object or changing use.Finally, we have studyed the influence of multi-polarity marquers on opinion classification at text level in three different cases : adaptation of a source domain to a target domain, multi-domain corpora and open domain corpora. The results of our experiments show that the potential improvement is bigger when the initial transfer was difficult. In the favorable cases, we improve accurracy up to five points.
2

Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : approches PAC-Bayésiennes et combinaison de similarités

Morvant, Emilie 18 September 2013 (has links) (PDF)
De nos jours, avec l'expansion d'Internet, l'abondance et la diversité des données accessibles qui en résulte, de nombreuses applications requièrent l'utilisation de méthodes d'apprentissage automatique supervisé capables de prendre en considération différentes sources d'informations. Par exemple, pour des applications relevant de l'indexation sémantique de documents multimédia, il s'agit de pouvoir efficacement tirer bénéfice d'informations liées à la couleur, au texte, à la texture ou au son des documents à traiter. La plupart des méthodes existantes proposent de combiner ces informations multimodales, soit en fusionnant directement les descriptions, soit en combinant des similarités ou des classifieurs, avec pour objectif de construire un modèle de classification automatique plus fiable pour la tâche visée. Ces aspects multimodaux induisent généralement deux types de difficultés. D'une part, il faut être capable d'utiliser au mieux toute l'information a priori disponible sur les objets à combiner. D'autre part, les données sur lesquelles le modèle doit être appliqué ne suivent nécessairement pas la même distribution de probabilité que les données utilisées lors de la phase d'apprentissage. Dans ce contexte, il faut être à même d'adapter le modèle à de nouvelles données, ce qui relève de l'adaptation de domaine. Dans cette thèse, nous proposons plusieurs contributions fondées théoriquement et répondant à ces problématiques. Une première série de contributions s'intéresse à l'apprentissage de votes de majorité pondérés sur un ensemble de votants dans le cadre de la classification supervisée. Ces contributions s'inscrivent dans le contexte de la théorie PAC-Bayésienne permettant d'étudier les capacités en généralisation de tels votes de majorité en supposant un a priori sur la pertinence des votants. Notre première contribution vise à étendre un algorithme récent, MinCq, minimisant une borne sur l'erreur du vote de majorité en classification binaire. Cette extension permet de prendre en compte une connaissance a priori sur les performances des votants à combiner sous la forme d'une distribution alignée. Nous illustrons son intérêt dans une optique de combinaison de classifieurs de type plus proches voisins, puis dans une perspective de fusion de classifieurs pour l'indexation sémantique de documents multimédia. Nous proposons ensuite une contribution théorique pour des problèmes de classification multiclasse. Cette approche repose sur une analyse PAC-Bayésienne originale en considérant la norme opérateur de la matrice de confusion comme mesure de risque. Notre seconde série de contributions concerne la problématique de l'adaptation de domaine. Dans cette situation, nous présentons notre troisième apport visant à combiner des similarités permettant d'inférer un espace de représentation de manière à rapprocher les distributions des données d'apprentissage et des données à traiter. Cette contribution se base sur la théorie des fonctions de similarités (epsilon,gamma,tau)-bonnes et se justifie par la minimisation d'une borne classique en adaptation de domaine. Pour notre quatrième et dernière contribution, nous proposons la première analyse PAC-Bayésienne appropriée à l'adaptation de domaine. Cette analyse se base sur une mesure consistante de divergence entre distributions permettant de dériver une borne en généralisation pour l'apprentissage de votes de majorité en classification binaire. Elle nous permet également de proposer un algorithme adapté aux classifieurs linéaires capable de minimiser cette borne de manière directe.
3

Nouvelles approches itératives avec garanties théoriques pour l'adaptation de domaine non supervisée / New iterative approaches with theoretical guarantees for unsupervised domain adaptation

Peyrache, Jean-Philippe 11 July 2014 (has links)
Ces dernières années, l’intérêt pour l’apprentissage automatique n’a cessé d’augmenter dans des domaines aussi variés que la reconnaissance d’images ou l’analyse de données médicales. Cependant, une limitation du cadre classique PAC a récemment été mise en avant. Elle a entraîné l’émergence d’un nouvel axe de recherche : l’Adaptation de Domaine, dans lequel on considère que les données d’apprentissage proviennent d’une distribution (dite source) différente de celle (dite cible) dont sont issues les données de test. Les premiers travaux théoriques effectués ont débouché sur la conclusion selon laquelle une bonne performance sur le test peut s’obtenir en minimisant à la fois l’erreur sur le domaine source et un terme de divergence entre les deux distributions. Trois grandes catégories d’approches s’en inspirent : par repondération, par reprojection et par auto-étiquetage. Dans ce travail de thèse, nous proposons deux contributions. La première est une approche de reprojection basée sur la théorie du boosting et s’appliquant aux données numériques. Celle-ci offre des garanties théoriques intéressantes et semble également en mesure d’obtenir de bonnes performances en généralisation. Notre seconde contribution consiste d’une part en la proposition d’un cadre permettant de combler le manque de résultats théoriques pour les méthodes d’auto-étiquetage en donnant des conditions nécessaires à la réussite de ce type d’algorithme. D’autre part, nous proposons dans ce cadre une nouvelle approche utilisant la théorie des (epsilon, gamma, tau)-bonnes fonctions de similarité afin de contourner les limitations imposées par la théorie des noyaux dans le contexte des données structurées / During the past few years, an increasing interest for Machine Learning has been encountered, in various domains like image recognition or medical data analysis. However, a limitation of the classical PAC framework has recently been highlighted. It led to the emergence of a new research axis: Domain Adaptation (DA), in which learning data are considered as coming from a distribution (the source one) different from the one (the target one) from which are generated test data. The first theoretical works concluded that a good performance on the target domain can be obtained by minimizing in the same time the source error and a divergence term between the two distributions. Three main categories of approaches are derived from this idea : by reweighting, by reprojection and by self-labeling. In this thesis work, we propose two contributions. The first one is a reprojection approach based on boosting theory and designed for numerical data. It offers interesting theoretical guarantees and also seems able to obtain good generalization performances. Our second contribution consists first in a framework filling the gap of the lack of theoretical results for self-labeling methods by introducing necessary conditions ensuring the good behavior of this kind of algorithm. On the other hand, we propose in this framework a new approach, using the theory of (epsilon, gamma, tau)- good similarity functions to go around the limitations due to the use of kernel theory in the specific context of structured data
4

Classification d’objets au moyen de machines à vecteurs supports dans les images de sonar de haute résolution du fond marin / Object classification using support vector machines in high resolution sonar seabed imagery

Rousselle, Denis 28 November 2016 (has links)
Cette thèse a pour objectif d'améliorer la classification d'objets sous-marins dans des images sonar haute résolution. En particulier, il s'agit de distinguer les mines des objets inoffensifs parmi une collection d'objets ressemblant à des mines. Nos recherches ont été dirigées par deux contraintes classiques en guerre de la mine : d'une part, le manque de données et d'autre part, le besoin de lisibilité des décisions. Nous avons donc constitué une base de données la plus représentative possible et simulé des objets dans le but de la compléter. Le manque d'exemples nous a mené à utiliser une représentation compacte, issue de la reconnaissance de visages : les Structural Binary Gradient Patterns (SBGP). Dans la même optique, nous avons dérivé une méthode d'adaptation de domaine semi-supervisée, basée sur le transport optimal, qui peut être facilement interprétable. Enfin, nous avons développé un nouvel algorithme de classification : les Ensemble of Exemplar-Maximum Excluding Ball (EE-MEB) qui sont à la fois adaptés à des petits jeux de données mais dont la décision est également aisément analysable / This thesis aims to improve the classification of underwater objects in high resolution sonar images. Especially, we seek to make the distinction between mines and harmless objects from a collection of mine-like objects. Our research was led by two classical constraints of the mine warfare : firstly, the lack of data and secondly, the need for readability of the classification. In this context, we built a database as much representative as possible and simulated objects in order to complete it. The lack of examples led us to use a compact representation, originally used by the face recognition community : the Structural Binary Gradient Patterns (SBGP). To the same end, we derived a method of semi-supervised domain adaptation, based on optimal transport, that can be easily interpreted. Finally, we developed a new classification algorithm : the Ensemble of Exemplar-Maximum Excluding Ball (EE-MEB) which is suitable for small datasets and with an easily interpretable decision function
5

Analyse syntaxique probabiliste en dépendances : approches efficaces à large contexte avec ressources lexicales distributionnelles

Henestroza Anguiano, Enrique 27 June 2013 (has links) (PDF)
Cette thèse présente des méthodes pour améliorer l'analyse syntaxique probabiliste en dépendances. Nous employons l'analyse à base de transitions avec une modélisation effectuée par des machines à vecteurs supports (Cortes and Vapnik, 1995), et nos expériences sont réalisées sur le français. L'analyse a base de transitions est rapide, de par la faible complexité des algorithmes sous-jacents, eux mêmes fondés sur une optimisation locale des décisions d'attachement. Ainsi notre premier fil directeur est d'élargir le contexte syntaxique utilisé. Partant du système de transitions arc-eager (Nivre, 2008), nous proposons une variante qui considère simultanément plusieurs gouverneurs candidats pour les attachements à droite. Nous testons aussi la correction des analyses, inspirée par Hall and Novák (2005), qui révise chaque attachement en choisissant parmi plusieurs gouverneurs alternatifs dans le voisinage syntaxique. Nos approches améliorent légèrement la précision globale ainsi que celles de l'attachement des groupes prépositionnels et de la coordination. Notre deuxième fil explore des approches semi-supervisées. Nous testons l'auto-entrainement avec un analyseur en deux étapes, basé sur McClosky et al. (2006), pour le domaine journalistique ainsi que pour l'adaptation au domaine médical. Nous passons ensuite à la modélisation lexicale à base de corpus, avec des classes lexicales généralisées pour réduire la dispersion des données, et des préférences lexicales de l'attachement des groupes prépositionnels pour aider à la désambiguïsation. Nos approches améliorent, dans certains cas, la précision et la couverture de l'analyseur, sans augmenter sa complexité théorique.
6

Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : Approches PAC Bayésiennes et combinaison de similarités

Morvant, Emilie 18 September 2013 (has links)
De nombreuses applications font appel à des méthodes d'apprentissage capables de considérer différentes sources d'information (e.g. images, son, texte) en combinant plusieurs modèles ou descriptions. Cette thèse propose des contributions théoriquement fondées permettant de répondre à deux problématiques importantes pour ces méthodes :(i) Comment intégrer de la connaissance a priori sur des informations ?(ii) Comment adapter un modèle sur des données ne suivant pas la distribution des données d'apprentissage ?Une 1ère série de résultats en classification supervisée s'intéresse à l'apprentissage de votes de majorité sur des classifieurs dans un contexte PAC-Bayésien prenant en compte un a priori sur ces classifieurs. Le 1er apport étend un algorithme de minimisation de l'erreur du vote en classification binaire en permettant l'utilisation d'a priori sous la forme de distributions alignées sur les votants. Notre 2ème contribution analyse théoriquement l'intérêt de la minimisation de la norme opérateur de la matrice de confusion de votes dans un contexte de données multiclasses. La 2nde série de résultats concerne l'AD en classification binaire : le 3ème apport combine des fonctions similarités (epsilon,gamma,tau)-Bonnes pour inférer un espace rapprochant les distributions des données d'apprentissage et de test à l'aide de la minimisation d'une borne. Notre 4ème contribution propose une analyse PAC-Bayésienne de l'AD basée sur une divergence entre distributions. Nous en dérivons des garanties théoriques pour les votes de majorité et un algorithme adapté aux classifieurs linéaires minimisant cette borne. / Many applications make use of machine learning methods able to take into account different information sources (e.g. sounds, image, text) by combining different descriptors or models. This thesis proposes a series of contributions theoretically founded dealing with two mainissues for such methods:(i) How to embed some a priori information available?(ii) How to adapt a model on new data following a distribution different from the learning data distribution? This last issue is known as domain adaptation (DA).A 1st series of contributions studies the problem of learning a majority vote over a set of voters for supervised classification in the PAC-Bayesian context allowing one to consider an a priori on the voters. Our 1st contribution extends an algorithm minimizing the error of the majority vote in binary classification by allowing the use of an a priori expressed as an aligned distribution. The 2nd analyses theoretically the interest of the minimization of the operator norm of the confusion matrix of the votes in the multiclass setting. Our 2nd series of contributions deals with DA for binary classification. The 3rd result combines (epsilon,gamma,tau)-Good similarity functions to infer a new projection space allowing us to move closer the learning and test distributions by means of the minimization of a DA bound. Finally, we propose a PAC-Bayesian analysis for DA based on a divergence between distributions. This analysis allows us to derive guarantees for learning majority votes in a DA context, and to design an algorithm specialized to linear classifiers minimizing our bound.
7

Stratégies de vision active pour la reconnaissance d'objets

Defretin, Joseph 23 November 2011 (has links) (PDF)
Cette thèse, réalisée en coopération avec l'ONERA, concerne la reconnaissance active d'objets 3D par un agent autonome muni d'une caméra d'observation. Alors qu'en reconnaissance passive les modalités d'acquisitions des observations sont imposées et génèrent parfois des ambiguïtés, la reconnaissance active exploite la possibilité de contrôler en ligne ces modalités d'acquisition au cours d'un processus d'inférence séquentiel dans le but de lever l'ambiguïté. L'objectif des travaux est d'établir des stratégies de planification dans l'acquisition de l'information avec le souci d'une mise en œuvre réaliste de la reconnaissance active. Le cadre de l'apprentissage statistique est pour cela mis à profit. La première partie des travaux se consacre à apprendre à planifier. Deux contraintes réalistes sont prise en compte : d'une part, une modélisation imparfaite des objets susceptible de générer des ambiguïtés supplémentaires - d'autre part, le budget d'apprentissage est coûteux (en temps, en énergie), donc limité. La deuxième partie des travaux s'attache à exploiter au mieux les observations au cours de la reconnaissance. La possibilité d'une reconnaissance active multi-échelles est étudiée pour permettre une interprétation au plus tôt dans le processus séquentiel d'acquisition de l'information. Les observations sont également utilisées pour estimer la pose de l'objet de manière robuste afin d'assurer la cohérence entre les modalités planifiées et celles réellement atteintes par l'agent visuel.
8

Analyse en locuteurs de collections de documents multimédia / Speaker analysis of multimedia data collections

Le Lan, Gaël 06 October 2017 (has links)
La segmentation et regroupement en locuteurs (SRL) de collection cherche à répondre à la question « qui parle quand ? » dans une collection de documents multimédia. C’est un prérequis indispensable à l’indexation des contenus audiovisuels. La tâche de SRL consiste d’abord à segmenter chaque document en locuteurs, avant de les regrouper à l'échelle de la collection. Le but est de positionner des labels anonymes identifiant les locuteurs, y compris ceux apparaissant dans plusieurs documents, sans connaître à l'avance ni leur identité ni leur nombre. La difficulté posée par le regroupement en locuteurs à l'échelle d'une collection est le problème de la variabilité intra-locuteur/inter-document : selon les documents, un locuteur peut parler dans des environnements acoustiques variés (en studio, dans la rue...). Cette thèse propose deux méthodes pour pallier le problème. D'une part, une nouvelle méthode de compensation neuronale de variabilité est proposée, utilisant le paradigme de triplet-loss pour son apprentissage. D’autre part, un procédé itératif d'adaptation non supervisée au domaine est présenté, exploitant l'information, même imparfaite, que le système acquiert en traitant des données, pour améliorer ses performances sur le domaine acoustique cible. De plus, de nouvelles méthodes d'analyse en locuteurs des résultats de SRL sont étudiées, pour comprendre le fonctionnement réel des systèmes, au-delà du classique taux d'erreur de SRL (Diarization Error Rate ou DER). Les systèmes et méthodes sont évalués sur deux émissions télévisées d'une quarantaine d'épisodes, pour les architectures de SRL globale ou incrémentale, à l'aide de la modélisation locuteur à l'état de l'art. / The task of speaker diarization and linking aims at answering the question "who speaks and when?" in a collection of multimedia recordings. It is an essential step to index audiovisual contents. The task of speaker diarization and linking firstly consists in segmenting each recording in terms of speakers, before linking them across the collection. Aim is, to identify each speaker with a unique anonymous label, even for speakers appearing in multiple recordings, without any knowledge of their identity or number. The challenge of the cross-recording linking is the modeling of the within-speaker/across-recording variability: depending on the recording, a same speaker can appear in multiple acoustic conditions (in a studio, in the street...). The thesis proposes two methods to overcome this issue. Firstly, a novel neural variability compensation method is proposed, using the triplet-loss paradigm for training. Secondly, an iterative unsupervised domain adaptation process is presented, in which the system exploits the information (even inaccurate) about the data it processes, to enhance its performances on the target acoustic domain. Moreover, novel ways of analyzing the results in terms of speaker are explored, to understand the actual performance of a diarization and linking system, beyond the well-known Diarization Error Rate (DER). Systems and methods are evaluated on two TV shows of about 40 episodes, using either a global, or longitudinal linking architecture, and state of the art speaker modeling (i-vector).
9

Stratégies de vision active pour la reconnaissance d'objets / Active vision strategies for object recognition

Defretin, Joseph 23 November 2011 (has links)
Cette thèse, réalisée en coopération avec l’ONERA, concerne la reconnaissance active d’objets 3D par un agent autonome muni d’une caméra d’observation. Alors qu’en reconnaissance passive les modalités d’acquisitions des observations sont imposées et génèrent parfois des ambiguïtés, la reconnaissance active exploite la possibilité de contrôler en ligne ces modalités d’acquisition au cours d’un processus d’inférence séquentiel dans le but de lever l’ambiguïté. L’objectif des travaux est d’établir des stratégies de planification dans l’acquisition de l’information avec le souci d’une mise en œuvre réaliste de la reconnaissance active. Le cadre de l’apprentissage statistique est pour cela mis à profit. La première partie des travaux se consacre à apprendre à planifier. Deux contraintes réalistes sont prise en compte : d’une part, une modélisation imparfaite des objets susceptible de générer des ambiguïtés supplémentaires - d’autre part, le budget d’apprentissage est coûteux (en temps, en énergie), donc limité. La deuxième partie des travaux s’attache à exploiter au mieux les observations au cours de la reconnaissance. La possibilité d’une reconnaissance active multi-échelles est étudiée pour permettre une interprétation au plus tôt dans le processus séquentiel d’acquisition de l’information. Les observations sont également utilisées pour estimer la pose de l’objet de manière robuste afin d’assurer la cohérence entre les modalités planifiées et celles réellement atteintes par l’agent visuel. / This PhD thesis, conducted in cooperation with ONERA, focuses on active 3D object recognition by an autonomous visual agent. Whereas in passive recognition, acquisition modalities of observations are fixed and may generate ambiguities, active recognition exploits the possibility of controling these modalities online in a sequential inference process in order to remove these ambiguities. The aim of this work is to design, in a statistical learning framework, planning strategies in the acquisition of information while achieving a realistic implementation of active recognition. The first part of the work is dedicated to learning to plan. Two realistic constraints are taken into account : on the one hand, planning with imperfect object modeling may generate further ambiguities - on the other hand, the learning cost (in time, energy) is expensive and therefore limited. The second part of this work focuses on maximally exploiting observations acquired during recognition. The possibility of an active multi-scale recognition is investigated to allow an interpretation as soon as the sequential acquisition process begins. Observations are also used to robustly estimate the pose of the object to ensure consistency between the planned and actual modality of the visual agent.
10

Advancing adversarial robustness with feature desensitization and synthesized data

Bayat, Reza 07 1900 (has links)
Cette thèse porte sur la question critique de la vulnérabilité des modèles d’apprentissage profond face aux attaques adversariales. Susceptibles à de légères perturbations invisibles à l'œil humain, ces modèles peuvent produire des prédictions erronées. Les attaques adversariales représentent une menace importante quant à l’utilisation de ces modèles dans des systèmes de sécurité critique. Pour atténuer ces risques, l’entraînement adversarial s’impose comme une approche prometteuse, consistant à entraîner les modèles sur des exemples adversariaux pour renforcer leur robustesse. Dans le Chapitre 1, nous offrons un aperçu détaillé de la vulnérabilité adversariale, en décrivant la création d’échantillons adversariaux ainsi que leurs répercussions dans le monde réel. Nous expliquons le processus de conception de ces exemples et présentons divers scénarios illustrant leurs conséquences potentiellement catastrophiques. En outre, nous examinons les défis associés à l'entraînement adversarial, en mettant l’emphase sur des défis tels que le manque de robustesse face à une large gamme d’attaques et le compromis entre robustesse et généralisation, qui sont au cœur de cette étude. Le Chapitre 2 présente la Désensibilisation des Caractéristiques Adversariales (AFD), une méthode innovante utilisant des techniques d’adaptation de domaine pour renforcer la robustesse adversariale. L’AFD vise à apprendre des caractéristiques invariantes aux perturbations adversariales, augmentant ainsi la résilience face à divers types et intensités d’attaques. Cette approche consiste à entraîner simultanément un discriminateur de domaine et un classificateur afin de réduire la divergence entre les représentations de données naturelles et adversariales. En alignant les caractéristiques des deux domaines, l'AFD garantit que les caractéristiques apprises sont à la fois prédictives et robustes, atténuant ainsi le surapprentissage à des schémas d'attaque spécifiques et favorisant une défense plus globale. Le Chapitre 3 présente l’Entraînement Adversarial avec Données Synthétisées, une méthode visant à combler l’écart entre la robustesse et la généralisation des réseaux de neurones. En utilisant des données synthétisées générées par des techniques avancées, ce chapitre explore comment l'incorporation de telles données peut atténuer le surapprentissage et améliorer la performance globale des modèles entraînés adversarialement. Les résultats montrent que, bien que l’entraînement adversarial soit souvent confronté à un compromis entre robustesse et généralisation, l’utilisation de données synthétisées permet de maintenir une haute précision des données corrompues et hors distribution sans compromettre la robustesse. Cette approche offre une voie prometteuse pour développer des réseaux de neurones à la fois résilients aux attaques adversariales et capables de bien généraliser à de nombreux scénarios. Le Chapitre 4 conclut la thèse en résumant les principales découvertes et contributions de cette recherche. De plus, il propose plusieurs pistes pour des recherches futures visant à améliorer davantage la sécurité et la fiabilité des modèles d’apprentissage profond. Ces pistes incluent l’exploration de l’effet des données synthétisées sur une gamme plus large de tâches de généralisation, le développement d’approches alternatives moins coûteuses en termes de calcul d’entraînement, et l’adaptation de nouvelles techniques guidées par l’information en retour pour synthétiser des données qui favorise l’efficacité d’échantillonnage. En suivant ces directions, les recherches futures pourront s’appuyer sur les bases présentées dans cette thèse et continuer à faire progresser le domaine de la robustesse adversariale, menant à des systèmes d’apprentissage automatique plus sécuritaires et plus fiables. À travers ces contributions, cette thèse avance la compréhension de la robustesse adversariale et propose des solutions pratiques pour améliorer la sécurité et la fiabilité des systèmes d'apprentissage automatique. En abordant les limites des méthodes actuelles d'entraînement adversarial et en introduisant des approches innovatrices comme l'AFD et l'incorporation de données synthétisées, cette recherche ouvre le chemin à des modèles d'apprentissage automatique plus robustes et généralisables. / This thesis addresses the critical issue of adversarial vulnerability in deep learning models, which are susceptible to slight, human-imperceptible perturbations that can lead to incorrect predictions. Adversarial attacks pose significant threats to the deployment of these models in safety-critical systems. To mitigate these threats, adversarial training has emerged as a prominent approach, where models are trained on adversarial examples to enhance their robustness. In Chapter 1, we provide a comprehensive background on adversarial vulnerability, detailing the creation of adversarial examples and their real-world implications. We illustrate how adversarial examples are crafted and present various scenarios demonstrating their potential catastrophic outcomes. Furthermore, we explore the challenges associated with adversarial training, focusing on issues like the lack of robustness against a broad range of attack strengths and a trade-off between robustness and generalization, which are the subjects of our study. Chapter 2 introduces Adversarial Feature Desensitization (AFD), a novel method that leverages domain adaptation techniques to enhance adversarial robustness. AFD aims to learn features that are invariant to adversarial perturbations, thereby improving resilience across various attack types and strengths. This approach involves training a domain discriminator alongside the classifier to reduce the divergence between natural and adversarial data representations. By aligning the features from both domains, AFD ensures that the learned features are both predictive and robust, mitigating overfitting to specific attack patterns and promoting broader defensive capability. Chapter 3 presents Adversarial Training with Synthesized Data, a method aimed at bridging the gap between robustness and generalization in neural networks. By leveraging synthesized data generated through advanced techniques, this chapter explores how incorporating such data can mitigate robust overfitting and enhance the overall performance of adversarially trained models. The findings indicate that while adversarial training traditionally faces a trade-off between robustness and generalization, the use of synthesized data helps maintain high accuracy on corrupted and out-of-distribution data without compromising robustness. This approach provides a promising pathway to develop neural networks that are both resilient to adversarial attacks and capable of generalizing well to a wide range of scenarios. Chapter 4 concludes the thesis by summarizing the key findings and contributions of this thesis. Additionally, it outlines several avenues for future research to further enhance the security and reliability of deep learning models. Future research could explore the effect of synthesized data on a broader range of generalization tasks, develop alternative approaches to adversarial training that are less computationally expensive, and adapt new feedback-guided techniques for synthesizing data to enhance sample efficiency. By pursuing these directions, future research can build on the foundations laid by this thesis and continue to advance the field of adversarial robustness, ultimately leading to safer and more reliable machine learning systems. Through these contributions, this thesis advances the understanding of adversarial robustness and proposes practical solutions to enhance the security and reliability of machine learning systems. By addressing the limitations of current adversarial training methods and introducing innovative approaches like AFD and the incorporation of synthesized data, this research paves the way for more robust and generalizable machine learning models capable of withstanding a diverse array of adversarial attacks.

Page generated in 0.1293 seconds