• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Durabilite des assemblages collés : aspects mécaniques et physico-chimiques

Chauffaille, Sébastien 24 March 2011 (has links)
L’assemblage par collage est une technique de plus en plus utilisée dans les industries aéronautique, aérospatiale et médicale. L’étude des assemblages est d’une grande importance et nécessite le développement de techniques de contrôle des performances, autant au niveau mécanique, que physico-chimique. Dans cette étude nous abordons plusieurs problématiques liées au collage. La première approche est purement mécanique, avec la mise au point d’un essai à simple levier ou « Single Cantilever Beam adhesion test » (SCB), variante du « Wedge test » dans lequel une charge constante est appliquée a une extremité libre d’un adhérent causant un moment de flexion nécessaire à la rupture du joint. A travers cet essai, différents phénomènes (pré-fissuration, plasticité, …) on été observés et traités afin d’analyser les énergies de ruptures dans le joint de colle.L’une des préoccupations majeures, et seconde approche de ce projet sur l’étude des assemblages collés, est le vieillissement humide. Les effets du vieillissement sont analysés par SCB. La compréhension du vieillissement doit passer par une meilleure connaissance de la cinétique de diffusion, une technique d’impédancemétrie, dérivée de l’électrochimie, est donc proposée pour analyser la prise d’eau dans le joint collé. L’atout de cette dernière technique est de donner accès à la cinétique de diffusion in situ et dans des géométries proches des échantillons utilisés lors des essais mécaniques. / Structural adhesives are increasingly used in the aeronautics, aerospace and medical industrie, leading to the necessity to develop new tools for the assessment of adhesives, both mechanically and physico-chemically.This study deals with two types of technique to quantify the durability of adhesive joints. The first approach is purely mechanical. We adopt a Single Cantilever Beam adhesion test (SCB) in which a constant load is applied at the free end of a flexible beam, leading to a couple inducing fracture of the adhesive joint. From this test, different phenomena have been observed (pre-crack behaviour, plasticity, ...), analysed and quantified, to give a better appraisal of adhesive fracture.The second approach deals with adhesive ageing in water. The characterisation of water diffusion is of prime importance in many practical situations. A technique of impedancemetry, based on electrochemical techniques, is applied to the characterisation of diffusion and absorption properties of adhesives. A major asset of this technique is to be able to follow diffusion measurement in situ.
22

Entwicklung transparent geklebter Glas-Rahmenecken und Untersuchung des Tragverhaltens / Development of transparently bonded glass frame corners and investigation of the structural behavior

Prautzsch, Volker 23 October 2015 (has links) (PDF)
Im Konstruktiven Glasbau ist es keine Besonderheit mehr, Glasträger für Dachkonstruktionen und Glasschwerter in Fassaden einzusetzen, um leichte, transparente und in den Hintergrund tretende Tragkonstruktionen umzusetzen. Für die Fügung dieser tragenden Bauteile werden bisher Verbindungsmittel aus Edelstahl eingesetzt, die optisch beeinträchtigen, Bohrungen im Glas erfordern und ungünstige Spannungsspitzen im Glas hervorrufen. Demgegenüber ist das Kleben für den spröden Werkstoff Glas ein materialgerechteres Fügeverfahren. Die Untersuchung einer flächigen Klebverbindung zum Lastabtrag zwischen tragenden Glas-Bauteilen im Primärtragwerk ist Gegenstand der vorliegenden Arbeit. Bei einer relativ großen Schichtdicke bildet die transparente Ausführung eine ganz wesentliche Prämisse. Ein weiterer Anspruch liegt in der Alterungsbeständigkeit und der Tragfähigkeit. An einer Auswahl von 14 potentiell geeigneten, transparenten Acrylat-, Epoxidharz- und Polyurethanklebstoffen werden mit Hilfe thermomechanischer und mechanischer Prüfverfahren temperaturabhängige Materialeigenschaften ermittelt. Ergänzend wird die Langzeitbeständigkeit der Klebstoffe durch eine künstliche Alterung im Verbund überprüft. Im Anschluss erfolgt die Ermittlung der lichttechnischen Eigenschaften sowie die visuelle Beurteilung der Sichtproben. Im Resultat wird ein UV- und lichthärtender Acrylatklebstoff als besonders geeignet identifiziert. Für diesen Klebstoff werden Haftfestigkeitsuntersuchungen im Druckscherversuch unter Temperatur- und Alterungseinflüssen sowie Zeitstandversuche an Substanzproben und kleinen Prüfkörpern durchgeführt. Für den Einsatz in einer flächigen Klebung wird ein geeignetes Dosier- und Aushärteverfahren entwickelt. Der Tragfähigkeitsnachweis der geklebten Verbindung erfolgt an großformatigen Bauteilmustern. Bei diesen Versuchen wird jeweils die Belastbarkeitsgrenze des Glases erreicht, während die Klebung intakt bleibt. Ein Zeitstandversuch dient zur Aufzeichnung des Kriechverhaltens an Bauteilmustern bei erhöhter Temperatur. Begleitend zum Entstehen der vorliegenden Arbeit werden mehrere Bauvorhaben mit Ganzglaskonstruktionen umgesetzt. Der Verzicht auf jegliche metallische Verbindungsmittel stellt bei diesen Objekten in Deutschland ein bauaufsichtliches und bautechnisches Novum dar. Die Fügung von Glasstütze und Glasträger innerhalb des gläsernen Primärtragwerks erfolgt ausschließlich und erstmals über eine transparente Acrylatklebung, deren Ausführung auf Erkenntnissen der vorliegenden Arbeit basiert. Die umschließende Verglasung wird mit einem zugelassenen Silikonklebstoff an der Tragkonstruktion befestigt. Zwei der beschriebenen Bauvorhaben werden seit der Erstellung in einem umfangreichen Monitoring beobachtet, um weitergehende Aussagen zum Langzeitverhalten der Klebungen zu erhalten. Die weitgehenden Untersuchungen der vorliegenden Arbeit wie auch des laufenden Monitorings sollen Bedeutung und Zuverlässigkeit der transparenten, lastabtragenden Klebungen im Konstruktiven Glasbau belegen helfen. / The use of glass beams in transparent roofs and glass fins as part of the facade is already state-of-the-art construction to achieve a transparent and lightweight appearance. Until now, mechanical fasteners made from stainless steel are used to join these structural components. Those fasteners visually interfere, require holes in the glass and cause unfavorable stress peaks in the glass. In contrast, adhesive bonding is much more appropriate to join the brittle material glass. The subject of this dissertation is the study of a planar adhesive joint which transfers the load between the load-bearing glass components into the primary structure. With a relatively large layer thickness, the manufacturing of the transparent joint represents a major challenge. Furthermore, the aging resistance and the load-bearing capacity must be proven. A selection of 14 potentially suitable, transparent adhesives of acrylate, epoxy resin and polyurethane are tested for temperature-depending material properties. These tests are based on thermo-mechanical and mechanical test methods. In addition, the long-term durability of the adhesives is verified by artificial aging test on bonded specimens. Subsequently, the photometric characteristics and the visual quality of the samples are assessed. As the result an UV- and light-curing acrylate adhesive is identified as particularly suitable. Compression shear tests under temperature and aging influences as well as creep tests are performed on substance samples and small-scale specimens to determine the adhesive strength of this adhesive. A suitable application and curing process is developed for use in planar bonded joints. Tests on specimen components were carried out to determine the load-bearing capacity of the bonded glass frame corners. In these experiments, the glass fails while the adhesive joint remains intact. Creep test are used to record the creep deformation of component specimen at increased temperature. Accompanying the study, several building projects are realized to use adhesive bonding technology in all-glass constructions. Without any visible forms of connection, the glass construction represents a significant innovation in Germany in terms of both building legislation and building technology. It´s the first time, glass fins and glass beams are joint to a glass primary structural system via transparent acrylate adhesive. The connection method is based on the findings of the present study. The glass panels of the envelope are joined to the primary glass structure with an approved silicone adhesive. Two of the described construction projects are monitored to obtain further knowledge about the long-term behaviour of the bonded joints. The comprehensive studies of this thesis as well as the ongoing monitoring have proven the significance and the reliability of transparent, load-bearing bonded joints in the field of glass construction.
23

Entwicklung transparent geklebter Glas-Rahmenecken und Untersuchung des Tragverhaltens

Prautzsch, Volker 15 September 2015 (has links)
Im Konstruktiven Glasbau ist es keine Besonderheit mehr, Glasträger für Dachkonstruktionen und Glasschwerter in Fassaden einzusetzen, um leichte, transparente und in den Hintergrund tretende Tragkonstruktionen umzusetzen. Für die Fügung dieser tragenden Bauteile werden bisher Verbindungsmittel aus Edelstahl eingesetzt, die optisch beeinträchtigen, Bohrungen im Glas erfordern und ungünstige Spannungsspitzen im Glas hervorrufen. Demgegenüber ist das Kleben für den spröden Werkstoff Glas ein materialgerechteres Fügeverfahren. Die Untersuchung einer flächigen Klebverbindung zum Lastabtrag zwischen tragenden Glas-Bauteilen im Primärtragwerk ist Gegenstand der vorliegenden Arbeit. Bei einer relativ großen Schichtdicke bildet die transparente Ausführung eine ganz wesentliche Prämisse. Ein weiterer Anspruch liegt in der Alterungsbeständigkeit und der Tragfähigkeit. An einer Auswahl von 14 potentiell geeigneten, transparenten Acrylat-, Epoxidharz- und Polyurethanklebstoffen werden mit Hilfe thermomechanischer und mechanischer Prüfverfahren temperaturabhängige Materialeigenschaften ermittelt. Ergänzend wird die Langzeitbeständigkeit der Klebstoffe durch eine künstliche Alterung im Verbund überprüft. Im Anschluss erfolgt die Ermittlung der lichttechnischen Eigenschaften sowie die visuelle Beurteilung der Sichtproben. Im Resultat wird ein UV- und lichthärtender Acrylatklebstoff als besonders geeignet identifiziert. Für diesen Klebstoff werden Haftfestigkeitsuntersuchungen im Druckscherversuch unter Temperatur- und Alterungseinflüssen sowie Zeitstandversuche an Substanzproben und kleinen Prüfkörpern durchgeführt. Für den Einsatz in einer flächigen Klebung wird ein geeignetes Dosier- und Aushärteverfahren entwickelt. Der Tragfähigkeitsnachweis der geklebten Verbindung erfolgt an großformatigen Bauteilmustern. Bei diesen Versuchen wird jeweils die Belastbarkeitsgrenze des Glases erreicht, während die Klebung intakt bleibt. Ein Zeitstandversuch dient zur Aufzeichnung des Kriechverhaltens an Bauteilmustern bei erhöhter Temperatur. Begleitend zum Entstehen der vorliegenden Arbeit werden mehrere Bauvorhaben mit Ganzglaskonstruktionen umgesetzt. Der Verzicht auf jegliche metallische Verbindungsmittel stellt bei diesen Objekten in Deutschland ein bauaufsichtliches und bautechnisches Novum dar. Die Fügung von Glasstütze und Glasträger innerhalb des gläsernen Primärtragwerks erfolgt ausschließlich und erstmals über eine transparente Acrylatklebung, deren Ausführung auf Erkenntnissen der vorliegenden Arbeit basiert. Die umschließende Verglasung wird mit einem zugelassenen Silikonklebstoff an der Tragkonstruktion befestigt. Zwei der beschriebenen Bauvorhaben werden seit der Erstellung in einem umfangreichen Monitoring beobachtet, um weitergehende Aussagen zum Langzeitverhalten der Klebungen zu erhalten. Die weitgehenden Untersuchungen der vorliegenden Arbeit wie auch des laufenden Monitorings sollen Bedeutung und Zuverlässigkeit der transparenten, lastabtragenden Klebungen im Konstruktiven Glasbau belegen helfen. / The use of glass beams in transparent roofs and glass fins as part of the facade is already state-of-the-art construction to achieve a transparent and lightweight appearance. Until now, mechanical fasteners made from stainless steel are used to join these structural components. Those fasteners visually interfere, require holes in the glass and cause unfavorable stress peaks in the glass. In contrast, adhesive bonding is much more appropriate to join the brittle material glass. The subject of this dissertation is the study of a planar adhesive joint which transfers the load between the load-bearing glass components into the primary structure. With a relatively large layer thickness, the manufacturing of the transparent joint represents a major challenge. Furthermore, the aging resistance and the load-bearing capacity must be proven. A selection of 14 potentially suitable, transparent adhesives of acrylate, epoxy resin and polyurethane are tested for temperature-depending material properties. These tests are based on thermo-mechanical and mechanical test methods. In addition, the long-term durability of the adhesives is verified by artificial aging test on bonded specimens. Subsequently, the photometric characteristics and the visual quality of the samples are assessed. As the result an UV- and light-curing acrylate adhesive is identified as particularly suitable. Compression shear tests under temperature and aging influences as well as creep tests are performed on substance samples and small-scale specimens to determine the adhesive strength of this adhesive. A suitable application and curing process is developed for use in planar bonded joints. Tests on specimen components were carried out to determine the load-bearing capacity of the bonded glass frame corners. In these experiments, the glass fails while the adhesive joint remains intact. Creep test are used to record the creep deformation of component specimen at increased temperature. Accompanying the study, several building projects are realized to use adhesive bonding technology in all-glass constructions. Without any visible forms of connection, the glass construction represents a significant innovation in Germany in terms of both building legislation and building technology. It´s the first time, glass fins and glass beams are joint to a glass primary structural system via transparent acrylate adhesive. The connection method is based on the findings of the present study. The glass panels of the envelope are joined to the primary glass structure with an approved silicone adhesive. Two of the described construction projects are monitored to obtain further knowledge about the long-term behaviour of the bonded joints. The comprehensive studies of this thesis as well as the ongoing monitoring have proven the significance and the reliability of transparent, load-bearing bonded joints in the field of glass construction.
24

Dynamic Mixed-Mode Fracture of Bonded Composite Joints for Automotive Crashworthiness

Pohlit, David Joseph 20 July 2007 (has links)
An experimental evaluation of the mixed-mode fracture behavior of bonded composite joints is presented. Commonly used experimental techniques for characterizing the mode I, mixed-mode I/II, mode II, and mode III fracture behavior have been employed for the purpose of developing a fracture envelope to be utilized in the automotive design process. These techniques make use of such test geometries as the double cantilever beam (DCB), asymmetric double cantilever beam (ADCB), single-leg bend (SLB), end-loaded split (ELS), and split cantilever beam (SCB) specimens. Symmetric versions of the DCB, SLB, and ELS specimens produced mode mixities of 0°, 41°, and 90° respectively, while the testing of ADCB specimens allowed for mode mixities of 18°, 31°. Pronounced stick-slip behavior was observed for all specimen test geometries under both quasi-static and dynamic loading conditions. Due to the nature of the adhesive studied, a limited number of data points were obtained under mode I loading conditions. A significant increase in the number of measurable crack initiation events was observed for mixed-mode I/II loading conditions, where stick slip behavior was less pronounced. Additionally, a comparison of the measured fracture energies obtained under mixed-mode I/II loading conditions reveals that the addition of a small mode II component results in a decrease in the mode I fracture energy by roughly 50%, as the crack was driven to the interface between the adhesive layer and composite adherends. Furthermore, the propensity of debonds to propagate into the woven composite laminate adherends under mode II loading conditions limited the number of crack initiation points that could be obtained to one or two usable data points per specimen. A limited number of experimental tests using the SCB specimen for mode III fracture characterization, combined with a numerical analysis via finite element analysis, revealed a significant mode II contribution toward the specimen edges. Similarly, FE analyses on full bond width and half bond width SCB specimens was conducted, and results indicate that by inducing a bond width reduction of 50%, the mode II contribution is greatly decreased across the entire width of the specified crack front. To provide a means for comparison to results obtained using the standard DCB specimen, an alternative driven wedge test specimen geometry was analyzed, as this geometry provided a significant increase in the number of measurable data points under mode I loading conditions. A three-dimensional finite element analysis was conducted to establish ratios of simple beam theory results to those obtained via FEA, GSBT/GFEA, were of particular interest, as these ratios were used to establish correction factors corresponding to specific crack lengths to be used in correcting results obtained from an experimental study utilizing a driven wedge technique. Corrected results show good agreement with results obtained from traditional mode I double cantilever beam tests. Finally, bulk adhesive experiments were conducted on compact tension specimens to establish a correlation between adhesively bonded composite joint and bulk adhesive fracture behavior under mode I loading conditions. Measured fracture energy values were shown to gradually drop across a range of applied loading rates, similar to the rate-dependent behavior observed with both the DCB and driven wedge specimens. Application of the time-temperature superposition principle was explored to determine whether or not such techniques were suitable for predicting the fracture behavior of the adhesive studied herein. Good correlation was established between the fracture energy values measured and the value of tan d obtained from dynamic mechanical analysis tests conducted at corresponding reduced test rates. / Master of Science
25

Ein Beitrag zum Einsatz von höherfesten Klebstoffen bei Holz-Glas-Verbundelementen / Application of high-modulus adhesives in load-bearing timber-glass-composite elements

Nicklisch, Felix 05 July 2016 (has links) (PDF)
Bestärkt durch das gesellschaftliche und wirtschaftliche Interesse an nachhaltigen und ressourcenschonenden Formen des Bauens gewinnen Holzkonstruktionen wieder unverkennbar an Bedeutung. Mit dieser Entwicklung bilden sich neue Konstruktionsprinzipien und Materialkombinationen im Bauwesen heraus, zu deren ingenieurtechnischer Beurteilung zum Teil keine ausreichenden Erkenntnisse vorliegen. Verbundkonstruktionen aus Holz und Glas sind eine innovative Bauweise, die zu einer höheren Materialeffizienz in Fassaden beiträgt, deren Wirkungsweise aber noch nicht ausreichend hinterfragt wurde. Werden Holz und Glas durch eine tragende Klebung verbunden, lässt sich das vielfach ungenutzte Tragpotenzial ausschöpfen, das eine in Scheibenebene belastete Verglasung aufweist. Die Qualität der Klebung entscheidet dabei über die Eigenschaften und das Leistungsvermögen des Bauteils. Die üblicherweise an dieser Schnittstelle eingesetzten Silikonklebstoffe weisen eine hohe Nachgiebigkeit und eine vergleichsweise geringe Festigkeit auf. Wenn die Verbundelemente als Aussteifung mitwirken sollen, bleibt ihr Einsatz deswegen auf Gebäude mit höchstens zwei Geschossen limitiert. Die vorliegende Arbeit trägt entscheidend zur Erweiterung der baulichen Möglichkeiten bei, indem sie der Anwendbarkeit von hochfesten Klebstoffen, die für den Einsatz im Bauwesen nur wenig erforscht sind, auf vielschichtige Weise nachgeht. Im Fokus stehen aussteifende Holz-Glas-Verbundelemente für die Fassade. Weder die Bauart noch das Bauprodukt Klebstoff sind derzeit in Deutschland in einer Norm erfasst. Das Klären der baurechtlichen Rahmenbedingungen ist daher unerlässlich und erfolgt mit engem Bezug zum konstruktiven Glasbau. Zusätzlich zur wissenschaftlichen Interpretation wird dadurch eine praxisnahe Bewertung der Versuchsergebnisse möglich, was ein Alleinstellungsmerkmal dieser Arbeit darstellt. Das Verformungsvermögen des Klebstoffs spielt eine zentrale Rolle bei der Materialauswahl und Gestaltung der Holz-Glas-Verbundelemente. Der Einfluss der Klebstoffsteifigkeit auf das Tragverhalten eines Einzelelements und auf dessen Interaktion mit den anderen Bestandteilen des Tragwerks wird an einem Modellgebäude untersucht. Auf Basis dieser Parameterstudie lassen sich drei Steifigkeitsbereiche definieren, auf die sich die Klebstoffauswahl für die weiteren Untersuchungen stützt. Der experimentelle Teil der Arbeit beginnt mit der ausführlichen Charakterisierung von sieben Klebstoffen. Davon werden zwei höherfeste Klebstoffe als geeignet identifiziert. Ein Silikonklebstoff wird als Referenzmaterial zur aktuellen Anwendungspraxis festgelegt. Das Hauptaugenmerk der folgenden Experimente richtet sich auf Aspekte der Alterungsbeständigkeit und des zeitabhängigen Materialverhaltens unter langandauernder mechanischer Beanspruchung. In labormaßstäblichen Alterungsprüfungen werden die Klebstoffproben unterschiedlichen Schadeinwirkungen ausgesetzt, die im Glas- und Fassadenbau relevant sind. Darüber hinaus erfolgen Kriechversuche an kleinen und großen Scherprüfkörpern. Letztere stellen einen besonderen Mehrwert dar, da sie eine realistische Klebfugengeometrie aufweisen und die Ergebnisse dadurch dem tatsächlichen Bauteilverhalten nahekommen. Für diese Zeitstandversuche wurde eine bislang einzigartige Versuchsanlage aus sechs Prüfrahmen mit Gasdruckfederbelastung entwickelt. Im Ergebnis zeigt sich, dass mit den gewählten höherfesten Klebstoffen die Festigkeit der nicht gealterten Klebschichten erwartungsgemäß gesteigert werden kann. Der Bruch des Fügepartners Holz wird zum maßgebenden Versagenskriterium. Die Verformungen des Verbundelements reduzieren sich gegenüber einer Silikonklebung deutlich. Allerdings offenbaren sich in einzelnen Alterungsszenarien und unter langandauernder Belastung auch Schwachstellen dieser Klebstoffe. Ihre Verwendung kann daher nur mit konstruktiven Kompensationsmaßnahmen oder durch Abschirmen der kritischen Einwirkungsgrößen empfohlen werden. Entsprechende Vorschläge werden bei der abschließenden Bewertung der Ergebnisse unterbreitet. Verfahren und Beurteilungsmethoden, die in dieser Arbeit angewendet und entwickelt werden, erleichtern die zukünftige Bewertung weiterer aussichtsreicher Klebstoffe für den Holz-Glas-Verbund. / Wooden constructions are on the rise again – encouraged by a strong public and economic trend towards sustainable and resource efficient buildings. Spurred by this growing interest novel design principles and material assemblies in architecture and the building industry evolve. These developments require further research due to the absence of evaluation tools and insufficient knowledge about their design. Load-bearing timber-glass composite elements could contribute to a more efficient use of materials in façade constructions. In this case a linear adhesive bond connects the glass pane to the timber substructure. This enables an in-plane loading of the glass whose capacity is not used to its full potential in conventional façades as it is solely applied as an infill panel. The quality of the adhesive bond defines the characteristics and the performance of the whole structural component. Structural sealants such as silicones, which are typically used for the joint, provide a high flexibility and only a low load-bearing capacity. Considering such elements being part of a bracing system, the mentioned characteristics limit the application range to buildings with not more than two stories. This thesis widens the scope with an in-depth examination of high-modulus adhesives, which have not yet been evaluated for their use in building constructions. Timber-glass composite elements used as a bracing component in façades are the focus of this work. Neither the full structural component nor the adhesive have yet been included into German building standards. Hence it is essential to assess the general requirements of their application. The relevant aspects are clarified in the context of glass constructions. In addition to the scientific discussion of the results, this approach facilitates also a practical evaluation of the findings, which is a unique feature of this work. The deformability of the adhesive becomes a crucial criterion when selecting the individual materials and designing the timber-glass composite elements. A case study assesses the influence of the adhesive stiffness on the behavior of a single element and its interaction with other members of the structural system. Based on the results, three different stiffness classes are introduced to support the selection process of the adhesives to be examined in further investigations. The experimental part of this work is initiated by a comprehensive characterization of seven shortlisted adhesives. The results enable a further differentiation of suitable materials. Two adhesives qualified as suitable for the main experiments. A silicone adhesive complements the test series to serve as a reference material to the current practice. In the next phase attention is drawn to the ageing stability and on the time-dependent material behavior of the adhesives under long-term loading. Small-scale specimens made from adhesively joint timber and glass pieces are exposed to different ageing scenarios which relate to the impacts typically encountered in façades. Beyond that, creep tests are carried out on small and large shear specimen. The latter provide extra benefit as they comprise long linear adhesive joints resembling virtually the situation in a real-size element. A specific long-term test rig was developed for this purpose comprising a loading unit with gas pressurized springs. Based on the results it can be concluded that joints with adhesives of high and intermediate stiffness enable an increase of characteristic failure loads and a significant reduction of deformation. With the stiffer joint near-surface rupture of timber fibers becomes the prevailing failure mechanism. The timber strength limits further loading of the adhesive joint. However, ageing and creep testing reveal also shortcomings of the adhesives. Their application can only be recommended if redundant compensation measures are taken or the joint is protected against critical environmental impacts. Appropriate solutions are proposed with the final recommendations of this work. Methods and assessment tools that have been developed and tested for this work offer the possibility of a more straight-forward evaluation of further promising adhesives and their use in load-bearing timber-glass composites.
26

Ein Beitrag zum Einsatz von höherfesten Klebstoffen bei Holz-Glas-Verbundelementen

Nicklisch, Felix 15 March 2016 (has links)
Bestärkt durch das gesellschaftliche und wirtschaftliche Interesse an nachhaltigen und ressourcenschonenden Formen des Bauens gewinnen Holzkonstruktionen wieder unverkennbar an Bedeutung. Mit dieser Entwicklung bilden sich neue Konstruktionsprinzipien und Materialkombinationen im Bauwesen heraus, zu deren ingenieurtechnischer Beurteilung zum Teil keine ausreichenden Erkenntnisse vorliegen. Verbundkonstruktionen aus Holz und Glas sind eine innovative Bauweise, die zu einer höheren Materialeffizienz in Fassaden beiträgt, deren Wirkungsweise aber noch nicht ausreichend hinterfragt wurde. Werden Holz und Glas durch eine tragende Klebung verbunden, lässt sich das vielfach ungenutzte Tragpotenzial ausschöpfen, das eine in Scheibenebene belastete Verglasung aufweist. Die Qualität der Klebung entscheidet dabei über die Eigenschaften und das Leistungsvermögen des Bauteils. Die üblicherweise an dieser Schnittstelle eingesetzten Silikonklebstoffe weisen eine hohe Nachgiebigkeit und eine vergleichsweise geringe Festigkeit auf. Wenn die Verbundelemente als Aussteifung mitwirken sollen, bleibt ihr Einsatz deswegen auf Gebäude mit höchstens zwei Geschossen limitiert. Die vorliegende Arbeit trägt entscheidend zur Erweiterung der baulichen Möglichkeiten bei, indem sie der Anwendbarkeit von hochfesten Klebstoffen, die für den Einsatz im Bauwesen nur wenig erforscht sind, auf vielschichtige Weise nachgeht. Im Fokus stehen aussteifende Holz-Glas-Verbundelemente für die Fassade. Weder die Bauart noch das Bauprodukt Klebstoff sind derzeit in Deutschland in einer Norm erfasst. Das Klären der baurechtlichen Rahmenbedingungen ist daher unerlässlich und erfolgt mit engem Bezug zum konstruktiven Glasbau. Zusätzlich zur wissenschaftlichen Interpretation wird dadurch eine praxisnahe Bewertung der Versuchsergebnisse möglich, was ein Alleinstellungsmerkmal dieser Arbeit darstellt. Das Verformungsvermögen des Klebstoffs spielt eine zentrale Rolle bei der Materialauswahl und Gestaltung der Holz-Glas-Verbundelemente. Der Einfluss der Klebstoffsteifigkeit auf das Tragverhalten eines Einzelelements und auf dessen Interaktion mit den anderen Bestandteilen des Tragwerks wird an einem Modellgebäude untersucht. Auf Basis dieser Parameterstudie lassen sich drei Steifigkeitsbereiche definieren, auf die sich die Klebstoffauswahl für die weiteren Untersuchungen stützt. Der experimentelle Teil der Arbeit beginnt mit der ausführlichen Charakterisierung von sieben Klebstoffen. Davon werden zwei höherfeste Klebstoffe als geeignet identifiziert. Ein Silikonklebstoff wird als Referenzmaterial zur aktuellen Anwendungspraxis festgelegt. Das Hauptaugenmerk der folgenden Experimente richtet sich auf Aspekte der Alterungsbeständigkeit und des zeitabhängigen Materialverhaltens unter langandauernder mechanischer Beanspruchung. In labormaßstäblichen Alterungsprüfungen werden die Klebstoffproben unterschiedlichen Schadeinwirkungen ausgesetzt, die im Glas- und Fassadenbau relevant sind. Darüber hinaus erfolgen Kriechversuche an kleinen und großen Scherprüfkörpern. Letztere stellen einen besonderen Mehrwert dar, da sie eine realistische Klebfugengeometrie aufweisen und die Ergebnisse dadurch dem tatsächlichen Bauteilverhalten nahekommen. Für diese Zeitstandversuche wurde eine bislang einzigartige Versuchsanlage aus sechs Prüfrahmen mit Gasdruckfederbelastung entwickelt. Im Ergebnis zeigt sich, dass mit den gewählten höherfesten Klebstoffen die Festigkeit der nicht gealterten Klebschichten erwartungsgemäß gesteigert werden kann. Der Bruch des Fügepartners Holz wird zum maßgebenden Versagenskriterium. Die Verformungen des Verbundelements reduzieren sich gegenüber einer Silikonklebung deutlich. Allerdings offenbaren sich in einzelnen Alterungsszenarien und unter langandauernder Belastung auch Schwachstellen dieser Klebstoffe. Ihre Verwendung kann daher nur mit konstruktiven Kompensationsmaßnahmen oder durch Abschirmen der kritischen Einwirkungsgrößen empfohlen werden. Entsprechende Vorschläge werden bei der abschließenden Bewertung der Ergebnisse unterbreitet. Verfahren und Beurteilungsmethoden, die in dieser Arbeit angewendet und entwickelt werden, erleichtern die zukünftige Bewertung weiterer aussichtsreicher Klebstoffe für den Holz-Glas-Verbund.:1 Einleitung 13 1.1 Motivation 13 1.2 Zielsetzung 18 1.3 Abgrenzung 20 1.4 Vorgehensweise 21 2 Die Holz-Glas-Verbundbauweise 25 2.1 Tragprinzip und Wirkungsweise 25 2.2 Forschungsschwerpunkte und Anwendungen 27 2.2.1 Geklebte Verglasungssysteme für Fenster 27 2.2.2 Träger 28 2.2.3 Wandscheiben und Schubfelder 32 2.2.4 Verbundplatten 36 2.3 Tragendes Glas im Verbund 37 2.3.1 Relevanz für Holz-Glas-Verbundlösungen 37 2.3.2 Historische Vorbilder 37 2.3.3 Verbundglas und Verbund-Sicherheitsglas 38 2.3.4 Verbundträger 40 2.3.5 Wandscheiben aus Glas 43 2.4 Konstruktionsprinzipien von tragenden Wand und Fassadenelementen aus Holz und Glas 46 2.4.1 Aufbau 46 2.4.2 Verglasung 46 2.4.3 Ausbildung der Klebfuge 48 2.4.4 Marktreife Systeme mit Koppelleiste 49 2.4.5 Identifizieren geeigneter Tragsysteme 52 2.4.6 Skelett-, Tafel- und Massivholzbauweise 53 2.5 Zusammenfassung wesentlicher Erkenntnisse 55 3 Klebverbindungen im Glasbau 57 3.1 Fügen von Glas 57 3.1.1 Besondere Merkmale des Fügewerkstoffs 57 3.1.2 Wirkprinzip und Fügeverfahren 60 3.1.3 Vor- und Nachteile von Klebverbindungen 61 3.1.4 Glasoberfläche 65 3.2 Typische Anwendungsbeispiele im Glasbau 67 3.2.1 Klassifizierung 67 3.2.2 Einordung der Holz-Glas-Verbundbauweise 69 3.2.3 Structural Sealant Glazing 71 3.2.4 Ganzglaskonstruktionen 74 3.3 Planungsstrategien 76 3.3.1 Sicheres Bauteilversagen 76 3.3.2 Redundanz und Versagensszenarien 78 3.3.3 Besonderheiten bei geklebten Verglasungen 80 3.4 Baurechtliche Rahmenbedingungen 82 3.4.1 Normung und Verfahrensweise in Deutschland 82 3.4.2 Harmonisierung auf europäischer Ebene 84 3.4.3 ETAG 002 – Leitlinie für Structural Glazing 86 3.4.4 Der Weg zur geklebten Glaskonstruktion 88 4 Einfluss der Klebstoffsteifigkeit auf aussteifende Holz-Glas-Verbundtragwerke 91 4.1 Aussteifung von Holzbauten 91 4.2 Berechnungsverfahren 92 4.2.1 Begründung der Auswahl der Verfahren 92 4.2.2 Verteilung von Horizontallasten auf die Wandscheiben eines Aussteifungssystems 93 4.2.3 Wandscheibe als Schubfeld 95 4.2.4 Federmodelle 97 4.3 Randbedingungen für die Analyse 101 4.3.1 Modellgebäude 101 4.3.2 Konstruktive Gestaltung 103 4.3.3 Lastannahmen 104 4.4 Parameterstudie 107 4.4.1 Nachgiebigkeit der Kernwände 107 4.4.2 Nachgiebigkeit eines Verbundelements 108 4.4.3 Auswirkung der Elementanordnung 112 4.4.4 Lastumlagerung bei Ausfall von Elementen 114 4.4.5 Horizontallastanteil auf Fassade und Kern 116 4.5 Rückschlüsse auf die Tragsystemgestaltung und die Klebstoffauswahl 120 5 Materialauswahl und -charakterisierung 123 5.1 Untersuchungsprogramm 123 5.2 Materialeigenschaften der Fügeteile 124 5.2.1 Glas 124 5.2.2 Holz und Holzwerkstoffe 126 5.3 Klebstoffe 128 5.3.1 Auswahlkriterien für Holz-Glas-Klebungen 128 5.3.2 Vorauswahl der Klebstoffsysteme 130 5.4 Experimentelle Methoden zur Charakterisierung der Klebstoffe 134 5.4.1 Dynamisch-mechanische Analyse 134 5.4.2 Einaxialer Zugversuch 135 5.4.3 Scherversuch 138 5.5 Versuchsergebnisse 141 5.5.1 Glasübergangstemperatur 141 5.5.2 Spannungs-Dehnungs-Beziehung 145 5.5.3 Einpunktkennwerte 150 5.5.4 Scherfestigkeit und Bruchbildanalyse 151 5.6 Klebstoffauswahl für die Hauptuntersuchungen 155 6 Experimentelle Untersuchungen an Klebverbindungen im Labormaßstab 157 6.1 Methodik 157 6.1.1 Untersuchungsgegenstand 157 6.1.2 Beurteilungsgrundlagen 158 6.1.3 Untersuchungsprogramm 159 6.1.4 Auswertungsmethoden 162 6.2 Geometrie und Herstellung der Prüfkörper 164 6.2.1 Prüfkörper zum Bestimmen der Haftfestigkeit vor und nach künstlicher Alterung 164 6.2.2 Scherprüfkörper für Kriechversuche 165 6.2.3 Vorbereiten und Konditionieren der Proben 166 6.3 Verfahren zur mechanischen Prüfung und zur künstlichen Alterung 168 6.3.1 Zug- und Scherversuche 168 6.3.2 Lagerung unter UV-Bestrahlung 170 6.3.3 Lagerung in Reinigungsmittellösung 171 6.3.4 Holzfeuchtewechsel bei +20 °C 172 6.3.5 Lagerung in schwefeldioxidhaltiger Atmosphäre 173 6.3.6 Kriechversuche 174 6.4 Auswertung der Versuchsergebnisse 176 6.4.1 Anfangsfestigkeit im Scherversuch 176 6.4.2 Anfangsfestigkeit im Zugversuch 181 6.4.3 Sichtbare Veränderungen der Klebschicht 183 6.4.4 Restfestigkeit nach Alterung 185 6.4.5 Analyse der Versagensmuster 189 6.4.6 Kriechverhalten 192 6.4.7 Restfestigkeit nach Vorbelastung 198 7 Experimentelle Untersuchungen an bauteilähnlichen Prüfkörpern 201 7.1 Untersuchungsprogramm und Methodik 201 7.1.1 Ziel der Untersuchungen 201 7.1.2 Materialien 202 7.1.3 Großer Scherprüfkörper 203 7.1.4 Herstellung der Prüfkörper 205 7.1.5 Versuchsprogramm – Bauteilversuche 207 7.2 Entwicklung eines Kriechprüfstands 210 7.2.1 Prüfrahmen 210 7.2.2 Lasteinleitung 211 7.2.3 Belastungsvorgang 212 7.2.4 Messtechnik und Monitoring 213 7.2.5 Modifikation für Kurzzeitversuche 214 7.3 Große Scherversuche unter Kurz- und Langzeiteinwirkung 215 7.3.1 Tragfähigkeit bei kurzzeitiger Lasteinwirkung 215 7.3.2 Spannungsverteilung im Glas 219 7.3.3 Kriechversuche mit 1000 Stunden Laufzeit 221 7.3.4 Verlängerte Kriechversuche am Klebstoff mit mittlerer Steifigkeit 226 7.3.5 Tragfähigkeit nach Vorbelastung 230 8 Bewertung und Handlungsempfehlung 231 8.1 Alterungsverhalten 231 8.2 Korrelation der Ergebnisse aus Fügeteil- und 233 Bauteilversuchen 8.2.1 Versuche bei kurzzeitiger Lasteinwirkung 233 8.2.2 Versuche bei langandauernder Lasteinwirkung 235 8.3 Der Vorzugsklebstoff und seine Einsatzgrenzen 238 8.4 Konstruktion 241 9 Zusammenfassung und Ausblick 243 9.1 Zusammenfassung 243 9.2 Ausblick 249 10 Literatur 253 11 Abbildungsverzeichnis 263 12 Tabellenverzeichnis 267 13 Bezeichnungen 268 Anhang A Materialkennwerte zur Klebstoffauswahl 271 B Klebverbindungen im Labormaßstab 287 C Bauteilähnliche Prüfkörper 373 / Wooden constructions are on the rise again – encouraged by a strong public and economic trend towards sustainable and resource efficient buildings. Spurred by this growing interest novel design principles and material assemblies in architecture and the building industry evolve. These developments require further research due to the absence of evaluation tools and insufficient knowledge about their design. Load-bearing timber-glass composite elements could contribute to a more efficient use of materials in façade constructions. In this case a linear adhesive bond connects the glass pane to the timber substructure. This enables an in-plane loading of the glass whose capacity is not used to its full potential in conventional façades as it is solely applied as an infill panel. The quality of the adhesive bond defines the characteristics and the performance of the whole structural component. Structural sealants such as silicones, which are typically used for the joint, provide a high flexibility and only a low load-bearing capacity. Considering such elements being part of a bracing system, the mentioned characteristics limit the application range to buildings with not more than two stories. This thesis widens the scope with an in-depth examination of high-modulus adhesives, which have not yet been evaluated for their use in building constructions. Timber-glass composite elements used as a bracing component in façades are the focus of this work. Neither the full structural component nor the adhesive have yet been included into German building standards. Hence it is essential to assess the general requirements of their application. The relevant aspects are clarified in the context of glass constructions. In addition to the scientific discussion of the results, this approach facilitates also a practical evaluation of the findings, which is a unique feature of this work. The deformability of the adhesive becomes a crucial criterion when selecting the individual materials and designing the timber-glass composite elements. A case study assesses the influence of the adhesive stiffness on the behavior of a single element and its interaction with other members of the structural system. Based on the results, three different stiffness classes are introduced to support the selection process of the adhesives to be examined in further investigations. The experimental part of this work is initiated by a comprehensive characterization of seven shortlisted adhesives. The results enable a further differentiation of suitable materials. Two adhesives qualified as suitable for the main experiments. A silicone adhesive complements the test series to serve as a reference material to the current practice. In the next phase attention is drawn to the ageing stability and on the time-dependent material behavior of the adhesives under long-term loading. Small-scale specimens made from adhesively joint timber and glass pieces are exposed to different ageing scenarios which relate to the impacts typically encountered in façades. Beyond that, creep tests are carried out on small and large shear specimen. The latter provide extra benefit as they comprise long linear adhesive joints resembling virtually the situation in a real-size element. A specific long-term test rig was developed for this purpose comprising a loading unit with gas pressurized springs. Based on the results it can be concluded that joints with adhesives of high and intermediate stiffness enable an increase of characteristic failure loads and a significant reduction of deformation. With the stiffer joint near-surface rupture of timber fibers becomes the prevailing failure mechanism. The timber strength limits further loading of the adhesive joint. However, ageing and creep testing reveal also shortcomings of the adhesives. Their application can only be recommended if redundant compensation measures are taken or the joint is protected against critical environmental impacts. Appropriate solutions are proposed with the final recommendations of this work. Methods and assessment tools that have been developed and tested for this work offer the possibility of a more straight-forward evaluation of further promising adhesives and their use in load-bearing timber-glass composites.:1 Einleitung 13 1.1 Motivation 13 1.2 Zielsetzung 18 1.3 Abgrenzung 20 1.4 Vorgehensweise 21 2 Die Holz-Glas-Verbundbauweise 25 2.1 Tragprinzip und Wirkungsweise 25 2.2 Forschungsschwerpunkte und Anwendungen 27 2.2.1 Geklebte Verglasungssysteme für Fenster 27 2.2.2 Träger 28 2.2.3 Wandscheiben und Schubfelder 32 2.2.4 Verbundplatten 36 2.3 Tragendes Glas im Verbund 37 2.3.1 Relevanz für Holz-Glas-Verbundlösungen 37 2.3.2 Historische Vorbilder 37 2.3.3 Verbundglas und Verbund-Sicherheitsglas 38 2.3.4 Verbundträger 40 2.3.5 Wandscheiben aus Glas 43 2.4 Konstruktionsprinzipien von tragenden Wand und Fassadenelementen aus Holz und Glas 46 2.4.1 Aufbau 46 2.4.2 Verglasung 46 2.4.3 Ausbildung der Klebfuge 48 2.4.4 Marktreife Systeme mit Koppelleiste 49 2.4.5 Identifizieren geeigneter Tragsysteme 52 2.4.6 Skelett-, Tafel- und Massivholzbauweise 53 2.5 Zusammenfassung wesentlicher Erkenntnisse 55 3 Klebverbindungen im Glasbau 57 3.1 Fügen von Glas 57 3.1.1 Besondere Merkmale des Fügewerkstoffs 57 3.1.2 Wirkprinzip und Fügeverfahren 60 3.1.3 Vor- und Nachteile von Klebverbindungen 61 3.1.4 Glasoberfläche 65 3.2 Typische Anwendungsbeispiele im Glasbau 67 3.2.1 Klassifizierung 67 3.2.2 Einordung der Holz-Glas-Verbundbauweise 69 3.2.3 Structural Sealant Glazing 71 3.2.4 Ganzglaskonstruktionen 74 3.3 Planungsstrategien 76 3.3.1 Sicheres Bauteilversagen 76 3.3.2 Redundanz und Versagensszenarien 78 3.3.3 Besonderheiten bei geklebten Verglasungen 80 3.4 Baurechtliche Rahmenbedingungen 82 3.4.1 Normung und Verfahrensweise in Deutschland 82 3.4.2 Harmonisierung auf europäischer Ebene 84 3.4.3 ETAG 002 – Leitlinie für Structural Glazing 86 3.4.4 Der Weg zur geklebten Glaskonstruktion 88 4 Einfluss der Klebstoffsteifigkeit auf aussteifende Holz-Glas-Verbundtragwerke 91 4.1 Aussteifung von Holzbauten 91 4.2 Berechnungsverfahren 92 4.2.1 Begründung der Auswahl der Verfahren 92 4.2.2 Verteilung von Horizontallasten auf die Wandscheiben eines Aussteifungssystems 93 4.2.3 Wandscheibe als Schubfeld 95 4.2.4 Federmodelle 97 4.3 Randbedingungen für die Analyse 101 4.3.1 Modellgebäude 101 4.3.2 Konstruktive Gestaltung 103 4.3.3 Lastannahmen 104 4.4 Parameterstudie 107 4.4.1 Nachgiebigkeit der Kernwände 107 4.4.2 Nachgiebigkeit eines Verbundelements 108 4.4.3 Auswirkung der Elementanordnung 112 4.4.4 Lastumlagerung bei Ausfall von Elementen 114 4.4.5 Horizontallastanteil auf Fassade und Kern 116 4.5 Rückschlüsse auf die Tragsystemgestaltung und die Klebstoffauswahl 120 5 Materialauswahl und -charakterisierung 123 5.1 Untersuchungsprogramm 123 5.2 Materialeigenschaften der Fügeteile 124 5.2.1 Glas 124 5.2.2 Holz und Holzwerkstoffe 126 5.3 Klebstoffe 128 5.3.1 Auswahlkriterien für Holz-Glas-Klebungen 128 5.3.2 Vorauswahl der Klebstoffsysteme 130 5.4 Experimentelle Methoden zur Charakterisierung der Klebstoffe 134 5.4.1 Dynamisch-mechanische Analyse 134 5.4.2 Einaxialer Zugversuch 135 5.4.3 Scherversuch 138 5.5 Versuchsergebnisse 141 5.5.1 Glasübergangstemperatur 141 5.5.2 Spannungs-Dehnungs-Beziehung 145 5.5.3 Einpunktkennwerte 150 5.5.4 Scherfestigkeit und Bruchbildanalyse 151 5.6 Klebstoffauswahl für die Hauptuntersuchungen 155 6 Experimentelle Untersuchungen an Klebverbindungen im Labormaßstab 157 6.1 Methodik 157 6.1.1 Untersuchungsgegenstand 157 6.1.2 Beurteilungsgrundlagen 158 6.1.3 Untersuchungsprogramm 159 6.1.4 Auswertungsmethoden 162 6.2 Geometrie und Herstellung der Prüfkörper 164 6.2.1 Prüfkörper zum Bestimmen der Haftfestigkeit vor und nach künstlicher Alterung 164 6.2.2 Scherprüfkörper für Kriechversuche 165 6.2.3 Vorbereiten und Konditionieren der Proben 166 6.3 Verfahren zur mechanischen Prüfung und zur künstlichen Alterung 168 6.3.1 Zug- und Scherversuche 168 6.3.2 Lagerung unter UV-Bestrahlung 170 6.3.3 Lagerung in Reinigungsmittellösung 171 6.3.4 Holzfeuchtewechsel bei +20 °C 172 6.3.5 Lagerung in schwefeldioxidhaltiger Atmosphäre 173 6.3.6 Kriechversuche 174 6.4 Auswertung der Versuchsergebnisse 176 6.4.1 Anfangsfestigkeit im Scherversuch 176 6.4.2 Anfangsfestigkeit im Zugversuch 181 6.4.3 Sichtbare Veränderungen der Klebschicht 183 6.4.4 Restfestigkeit nach Alterung 185 6.4.5 Analyse der Versagensmuster 189 6.4.6 Kriechverhalten 192 6.4.7 Restfestigkeit nach Vorbelastung 198 7 Experimentelle Untersuchungen an bauteilähnlichen Prüfkörpern 201 7.1 Untersuchungsprogramm und Methodik 201 7.1.1 Ziel der Untersuchungen 201 7.1.2 Materialien 202 7.1.3 Großer Scherprüfkörper 203 7.1.4 Herstellung der Prüfkörper 205 7.1.5 Versuchsprogramm – Bauteilversuche 207 7.2 Entwicklung eines Kriechprüfstands 210 7.2.1 Prüfrahmen 210 7.2.2 Lasteinleitung 211 7.2.3 Belastungsvorgang 212 7.2.4 Messtechnik und Monitoring 213 7.2.5 Modifikation für Kurzzeitversuche 214 7.3 Große Scherversuche unter Kurz- und Langzeiteinwirkung 215 7.3.1 Tragfähigkeit bei kurzzeitiger Lasteinwirkung 215 7.3.2 Spannungsverteilung im Glas 219 7.3.3 Kriechversuche mit 1000 Stunden Laufzeit 221 7.3.4 Verlängerte Kriechversuche am Klebstoff mit mittlerer Steifigkeit 226 7.3.5 Tragfähigkeit nach Vorbelastung 230 8 Bewertung und Handlungsempfehlung 231 8.1 Alterungsverhalten 231 8.2 Korrelation der Ergebnisse aus Fügeteil- und 233 Bauteilversuchen 8.2.1 Versuche bei kurzzeitiger Lasteinwirkung 233 8.2.2 Versuche bei langandauernder Lasteinwirkung 235 8.3 Der Vorzugsklebstoff und seine Einsatzgrenzen 238 8.4 Konstruktion 241 9 Zusammenfassung und Ausblick 243 9.1 Zusammenfassung 243 9.2 Ausblick 249 10 Literatur 253 11 Abbildungsverzeichnis 263 12 Tabellenverzeichnis 267 13 Bezeichnungen 268 Anhang A Materialkennwerte zur Klebstoffauswahl 271 B Klebverbindungen im Labormaßstab 287 C Bauteilähnliche Prüfkörper 373

Page generated in 0.0503 seconds