• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 12
  • 12
  • 12
  • 9
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adversarial games in machine learning : challenges and applications

Berard, Hugo 08 1900 (has links)
L’apprentissage automatique repose pour un bon nombre de problèmes sur la minimisation d’une fonction de coût, pour ce faire il tire parti de la vaste littérature sur l’optimisation qui fournit des algorithmes et des garanties de convergences pour ce type de problèmes. Cependant récemment plusieurs modèles d’apprentissage automatique qui ne peuvent pas être formulé comme la minimisation d’un coût unique ont été propose, à la place ils nécessitent de définir un jeu entre plusieurs joueurs qui ont chaque leur propre objectif. Un de ces modèles sont les réseaux antagonistes génératifs (GANs). Ce modèle génératif formule un jeu entre deux réseaux de neurones, un générateur et un discriminateur, en essayant de tromper le discriminateur qui essaye de distinguer les vraies images des fausses, le générateur et le discriminateur s’améliore résultant en un équilibre de Nash, ou les images produites par le générateur sont indistinguable des vraies images. Malgré leur succès les GANs restent difficiles à entrainer à cause de la nature antagoniste du jeu, nécessitant de choisir les bons hyperparamètres et résultant souvent en une dynamique d’entrainement instable. Plusieurs techniques de régularisations ont été propose afin de stabiliser l’entrainement, dans cette thèse nous abordons ces instabilités sous l’angle d’un problème d’optimisation. Nous commençons par combler le fossé entre la littérature d’optimisation et les GANs, pour ce faire nous formulons GANs comme un problème d’inéquation variationnelle, et proposons de la littérature sur le sujet pour proposer des algorithmes qui convergent plus rapidement. Afin de mieux comprendre quels sont les défis de l’optimisation des jeux, nous proposons plusieurs outils afin d’analyser le paysage d’optimisation des GANs. En utilisant ces outils, nous montrons que des composantes rotationnelles sont présentes dans le voisinage des équilibres, nous observons également que les GANs convergent rarement vers un équilibre de Nash mais converge plutôt vers des équilibres stables locaux (LSSP). Inspirer par le succès des GANs nous proposons pour finir, une nouvelle famille de jeux que nous appelons adversarial example games qui consiste à entrainer simultanément un générateur et un critique, le générateur cherchant à perturber les exemples afin d’induire en erreur le critique, le critique cherchant à être robuste aux perturbations. Nous montrons qu’à l’équilibre de ce jeu, le générateur est capable de générer des perturbations qui transfèrent à toute une famille de modèles. / Many machine learning (ML) problems can be formulated as minimization problems, with a large optimization literature that provides algorithms and guarantees to solve this type of problems. However, recently some ML problems have been proposed that cannot be formulated as minimization problems but instead require to define a game between several players where each player has a different objective. A successful application of such games in ML are generative adversarial networks (GANs), where generative modeling is formulated as a game between a generator and a discriminator, where the goal of the generator is to fool the discriminator, while the discriminator tries to distinguish between fake and real samples. However due to the adversarial nature of the game, GANs are notoriously hard to train, requiring careful fine-tuning of the hyper-parameters and leading to unstable training. While regularization techniques have been proposed to stabilize training, we propose in this thesis to look at these instabilities from an optimization perspective. We start by bridging the gap between the machine learning and optimization literature by casting GANs as an instance of the Variational Inequality Problem (VIP), and leverage the large literature on VIP to derive more efficient and stable algorithms to train GANs. To better understand what are the challenges of training GANs, we then propose tools to study the optimization landscape of GANs. Using these tools we show that GANs do suffer from rotation around their equilibrium, and that they do not converge to Nash-Equilibria. Finally inspired by the success of GANs to generate images, we propose a new type of games called Adversarial Example Games that are able to generate adversarial examples that transfer across different models and architectures.
12

Probabilistic Regression using Conditional Generative Adversarial Networks

Oskarsson, Joel January 2020 (has links)
Regression is a central problem in statistics and machine learning with applications everywhere in science and technology. In probabilistic regression the relationship between a set of features and a real-valued target variable is modelled as a conditional probability distribution. There are cases where this distribution is very complex and not properly captured by simple approximations, such as assuming a normal distribution. This thesis investigates how conditional Generative Adversarial Networks (GANs) can be used to properly capture more complex conditional distributions. GANs have seen great success in generating complex high-dimensional data, but less work has been done on their use for regression problems. This thesis presents experiments to better understand how conditional GANs can be used in probabilistic regression. Different versions of GANs are extended to the conditional case and evaluated on synthetic and real datasets. It is shown that conditional GANs can learn to estimate a wide range of different distributions and be competitive with existing probabilistic regression models.

Page generated in 0.0964 seconds