• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 44
  • 43
  • 20
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 480
  • 293
  • 100
  • 91
  • 91
  • 91
  • 69
  • 61
  • 59
  • 59
  • 40
  • 39
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Flight trial demonstration of seamless aeronautical networking

Plass, S., Hermenier, R., Lücke, O., Depoorter, D.G., Tordjman, T., Chatterton, M., Amirfeiz, M., Scotti, S., Cheng, Yongqiang, Pillai, Prashant, Gräupl, T., Durand, F., Murphy, K., Bell, J., Zaytsev, A. 19 May 2014 (has links)
Yes / This article presents the in-flight demonstration of a new integrated aircraft communications system combining legacy and future radio technologies. This system, developed and validated under real environmental conditions during flight trials, integrates all the aeronautical service domains within a common IPv6-based aeronautical network. The flight trials were held within the framework of the European SANDRA project at Oberpfaffenhofen, Germany, in June 2013. The presented outcomes emphasize the flexibility and scalability of the developed network and demonstrate the seamless service coverage of the given architecture across different airspace domains. / The research leading to these results has been partially funded by the European Community's Seventh Framework Program (FP7/2007-2013) under Grant Agreement n° 233679. The SANDRA project is a Large Scale Integrating Project for the FP7 Topic AAT.2008.4.4.2 (Integrated approach to network centric aircraft communications for global aircraft operations).
222

An analysis of a selected aviation company's competitive environment in South Africa / Deidré Potgieter

Potgieter, Deidré January 2014 (has links)
Competitiveness and gaining a sustainable competitive advantage are very important factors when analysing the success of companies involved in the aviation industry in South Africa. The success of these companies will depend on their ability to maintain technological capabilities in the areas of human resources and product development. Global aviation currently is concentrated in a few countries, with the USA being the largest contributor to an industry which is regarded as one of the fastest globalizing industries in terms of market structure and production systems. In South Africa, companies have managed to develop skills in aviation manufacturing. The opportunities that will be created, owing to changes in global production chains, will enable South African companies to establish themselves further as global suppliers. The aviation industry contains high risks, especially because it is considered to be the industry which acts as a driver for innovation. Complexity of production, the capital-intensive nature and high risks involved in developing new products and services have linked the industry to inevitable political influence and support. The industry can broadly be divided into two main sectors: military and commercial. Analysts predict that opportunities in the global aviation markets in future will increase considerably. This is attributed to more Asian, African and Latin-American regions capitalizing on opportunities that exist mainly within the commercial sector. They will form strategic alliances which will enable them to perform on low-cost platforms and offer exceptional services to major players in the aviation sector. To capitalize on these opportunities, companies need to analyse their external and internal environment. The main objective of this study is to analyse and to evaluate the competitive environment of a selected aviation company, to ensure that the best strategy is chosen and adopted and to confirm that the company can create and sustain a competitive advantage over competitors. The planning tools utilized in this study are the PEST and SWOT analyses. Both have been used in the strategic planning process of many other firms. These analyses have proved to be the key element needed to formulate an action plan to be and to stay competitive in the aviation industry. This study evaluates both of these planning tools and applies them to the company chosen for this case study. / MCom (Management Accountancy), North-West University, Potchefstroom Campus, 2014
223

An analysis of a selected aviation company's competitive environment in South Africa / Deidré Potgieter

Potgieter, Deidré January 2014 (has links)
Competitiveness and gaining a sustainable competitive advantage are very important factors when analysing the success of companies involved in the aviation industry in South Africa. The success of these companies will depend on their ability to maintain technological capabilities in the areas of human resources and product development. Global aviation currently is concentrated in a few countries, with the USA being the largest contributor to an industry which is regarded as one of the fastest globalizing industries in terms of market structure and production systems. In South Africa, companies have managed to develop skills in aviation manufacturing. The opportunities that will be created, owing to changes in global production chains, will enable South African companies to establish themselves further as global suppliers. The aviation industry contains high risks, especially because it is considered to be the industry which acts as a driver for innovation. Complexity of production, the capital-intensive nature and high risks involved in developing new products and services have linked the industry to inevitable political influence and support. The industry can broadly be divided into two main sectors: military and commercial. Analysts predict that opportunities in the global aviation markets in future will increase considerably. This is attributed to more Asian, African and Latin-American regions capitalizing on opportunities that exist mainly within the commercial sector. They will form strategic alliances which will enable them to perform on low-cost platforms and offer exceptional services to major players in the aviation sector. To capitalize on these opportunities, companies need to analyse their external and internal environment. The main objective of this study is to analyse and to evaluate the competitive environment of a selected aviation company, to ensure that the best strategy is chosen and adopted and to confirm that the company can create and sustain a competitive advantage over competitors. The planning tools utilized in this study are the PEST and SWOT analyses. Both have been used in the strategic planning process of many other firms. These analyses have proved to be the key element needed to formulate an action plan to be and to stay competitive in the aviation industry. This study evaluates both of these planning tools and applies them to the company chosen for this case study. / MCom (Management Accountancy), North-West University, Potchefstroom Campus, 2014
224

Reduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channels

Kannappa, Sandeep Mavuduru 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / High data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.
225

HYPER-X (X-43A) FLIGHT TEST RANGE OPERATIONS OVERVIEW

Lux-Baumann, Jessica, Burkes, Darryl A. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Hyper-X program flew X-43A research vehicles to hypersonic speeds over the Pacific Ocean in March and November 2004 from the Western Aeronautical Test Range, NASA Dryden Flight Research Center, Edwards, California. The program required multiple telemetry ground stations to provide continuous coverage of the captive carry, launch, boost, experiment, and descent phases of these missions. An overview is provided of vehicle telemetry and distributed assets that supported telemetry acquisition, best-source selection, radar tracking, video tracking, flight termination systems, and voice communications. Real-time data display and processing are discussed, and postflight analysis and comparison of data acquired are presented.
226

COMMON DETECTORS FOR TIER 1 MODULATIONS

Nelson, Tom, Perrins, Erik, Rice, Michael 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The ARTM Tier 1 waveforms include two versions of Feher patented QPSK (FQPSK-B and FQPSK-JR) and a version of shaped offset QPSK (SOQPSK-TG). In this paper we examine three common detector architectures for the ARTM Tier 1 modulations: a symbol-by-symbol detector, a cross correlated trellis coded modulation (XTCQM) detector, and a continuous phase modulation (CPM) detector. We show that when used to detect Tier 1 modulations, these detectors perform well even without knowledge of the modulation used by the transmitter. The common symbol-by-symbol detector suffers a loss of 1.5 dB for SOQPSK-TG and 1.6 dB for FQPSK-JR in bit error rate performance relative to the theoretical optimum for these modulations. The common XTCQM detector provides a bit error rate performance that is 0.1 dB worse than optimum for SOQPSK-TG and that matches optimum performance for FQPSK-JR. The common CPM detector achieves a bit error rate performance that is 0.25 dB worse than optimum for SOQPSK-TG and that approximately matches optimum for FQPSK-JR. The common XTCQM detector provides the best bit error rate performance, but this detector also has the highest complexity.
227

OFDM Performance on Aeronautical Channnels

Kamirah, Daniel K. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper provides an introduction to the Orthogonal Frequency Division Multiplexing (OFDM) scheme which has been proposed for future aeronautical telemetry applications. OFDM offers the potential for high data rates on radio channels with multipath such as aeronautical telemetry channels. This paper provides in introduction to OFDM and demonstrates how orthogonality is maintained over multipath channels by the introduction of a guard band and by the inclusion of a cyclic prefix. The simulation of OFDM in multipath is simulated and performance results are presented that show the degradation of this scheme on a multipath channel with and without the guard band and the cyclic prefix.
228

Performance Comparison of Aeronautical Telemetry in S-Band and C-Band

Temple, Kip, Selbrede, Robert 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / This paper compares telemetry link performance of the PCM/FM waveform when simultaneously transmitting in two different frequency bands, S-Band and C-Band. A description of the aircraft and ground station is presented followed by flight test results. These results are presented in the form of received signal strength and accumulated bit errors, versus time and link availability, over the flight paths. Conclusions are drawn based upon the presented flight test results.
229

RECOMMENDED MINIMUM TELEMETRY FREQUENCY SPACING WITH CPFSK, CPM, SOQPSK, AND FQPSK SIGNALS

Law, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper will present equations for calculating the minimum recommended frequency separation of two digital telemetry signals. The signals can be filtered continuous phase frequency shift keying (CPFSK), multi-h continuous phase modulation (CPM) [1], shaped offset quadrature phase shift keying-Telemetry Group (SOQPSK-TG, aka SOQPSK-A*) [2], or Feher’s patented quadrature phase shift keying FQPSK-B (or FQPSK-JR [3]). The equations are based on measured data in an adjacent channel interference (ACI) environment for filtered CPFSK (aka PCM/FM), multi-h CPM (or CPM for short), SOQPSK-TG, FQPSK-JR, and FQPSK-B. This paper is an extension of my 2001 and 2002 International Telemetering Conference papers on this topic [4, 5]. The quantity measured was bit error probability (BEP) versus frequency separation at a given signal energy per bit to noise power spectral density ratio (Eb/No). The interferers were CPFSK, CPM, SOQPSK-TG or FQPSK-B (-JR) signals. The results presented in this paper will be for a desired signal bit rate of 1 to 20 Mb/s, one interferer 20 dB larger than the desired signal (a few tests included two interferers), and various center frequency spacings, interfering signals, receivers, and demodulators. The overall ACI test effort has collected data sets at several bit rates and with one and two interferers. The results will be useful to system designers and range operators as they attempt to maximize the number of Mb/s that can be simultaneously transmitted with minimal interference in the telemetry bands.
230

Spectrum Sharing: Overview and Challenges of Small Cells Innovation in the Proposed 3.5 GHz Band

Oyediran, David 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Spectrum sharing between Federal and commercial users is a technique proposed by the FCC and NTIA to open up the 3.5 GHz band for wireless broadband use and small cell technology is one of the candidates for its' realization. The traffic on small cells is temporal and their chances of interfering with other services in shared spectrum are limited. DoD has a documented requirement of 865 MHz by 2025 to support telemetry but only 445 MHz is presently available. DoD is conducting researches to realize test and evaluation spectrum efficient technology with the aim to develop, demonstrate, and evaluate technology components required to enable flight and ground test telemetry operations. This paper will provide an overview on spectrum sharing using small cell technology for LTE-Advanced and dynamic spectrum access would be briefly described. Research challenges for protocols and algorithms would be addressed for future studies.

Page generated in 0.0414 seconds