• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 44
  • 43
  • 20
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 478
  • 291
  • 100
  • 91
  • 91
  • 91
  • 69
  • 61
  • 59
  • 59
  • 40
  • 39
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Mathematical Model Development Of The Anti Torque System Of A Notar Helicopter

Bakir, Huseyin Murat 01 December 2008 (has links) (PDF)
The anti-torque mechanism of a NOTAR helicopter is a complex system including vertical tail and pressurized tail boom which provides air ejection used for both circulation control around the boom and creating directed jet air at the end of the boom. This thesis targets the modeling of this mechanism and integrating it to a helicopter simulation model. Flight tests are performed on the MD 600N helicopter to verify the results. Finally, the simulation is compared with flight test data.
202

Evaluation of CMA+AMA Equalization for SOQPSK Modulation in Aeronautical Telemetry

KoneDossongui, Serge, Opasina, Oladotun, Umuolo, Henry, Betelle, Habtamu, Thang, Solomon, Shrestha, Robin 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Multipath interference continues to be the dominant cause of telemetry link outages in low-elevation angle reception scenarios. The most reliable and universally applicable solution to this problem is in the form of equalization. Previous work in this area has considered the Constant modulus algorithm (CMA) equalizer operating in a blind adaptive mode. To the extent that knowledge of the multipath channel improves the performance of CMA and related equalizers and permits the use of other equalization techniques, data aided equalizers are of interest. Channel knowledge is obtained by comparing the received samples with the samples corresponding to a known bit pattern (called a pilot block) periodically inserted in the telemetry data stream. The main objective of this research is to evaluate the performance of a modified CMA equalization algorithm, which has the property of automatically resolving the phase of the QPSK modulated symbol, and to determine its suitability for use with SOQPSK-TG by taking into account the capability of exploiting the presence of a periodically inserted pilot block. As an initial effort in that direction, this paper provides simulation results of the error performance of the blind linear combination of CMA and alphabet matched algorithm (AMA) equalizer as compared to that of pilot assisted equalization with SOQPSK modulation over aeronautical channel.
203

Design of a Radio channel Simulator for Aeronautical Communications

Montaquila, Roberto V., Iudice, Ivan, Castrillo, Vittorio U. 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The goal of this paper is to implement a model of multipath fading in a radio channel simulator for aeronautical applications. When developing a wireless communications system, it is useful to perform simulations of the radio context in which the system has to operate. A radio link is substantially composed by three parts: transmitting segment, transmission channel and receiving segment. We focus our attention on the radio channel propagation. We proposed two geometrical models of a territory corresponding to a determined flight area and, after importing the data needed to estimate our parameters, we compared our results with the channel soundings in literature, obtaining comparable values.
204

Small-size Unmanned Model Helicopter Guidance And Control

Karasu, Caglar 01 December 2004 (has links) (PDF)
The deployment of unmanned aerial vehicles (UAV) in military applications increased the research about them and the importance of them. The unmanned helicopters are the most agile and maneuverable vehicles among the unmanned aerial vehicles (UAV). The ability of hovering and low speed cruise makes them even more attractive. Such abilities supply more areas to deploy the usage of the unmanned helicopters like search &amp / rescue, mapping, surveillance. Autonomy is the key property for these vehicles. In order to provide autonomy to an unmanned vehicle, the guidance and the autopilot units are designed in the first step. Waypoints are used to track the desired trajectories. The line of sight guidance is used to reach an active waypoint. In order to realize the guidance commands controllers are designed by using LQR. In addition, position and heading controllers are designed by root-locus method. The trimming and linearization are implemented in order to extract linear models used for controller design. Keywords: Helicopter, control, guidance
205

Application of image analysis techniques in forward looking synthetic vision system integrity monitors /

Kakarlapudi, Swarna. January 2004 (has links)
Thesis (M.S.)--Ohio University, June, 2004. / Includes bibliographical references (p. 136-138).
206

Application of image analysis techniques in forward looking synthetic vision system integrity monitors

Kakarlapudi, Swarna. January 2004 (has links)
Thesis (M.S.)--Ohio University, June, 2004. / Title from PDF t.p. Includes bibliographical references (p. 136-138)
207

Telerobotic system design for a remotely operated lightweight park flyer micro aerial vehicle

Kresge, Jared T. January 2006 (has links)
Thesis (M.S.)--Ohio University, November, 2006. / Title from PDF t.p. Includes bibliographical references.
208

On-board reasoning for an autonomous spacecraft

Monekosso, Ndedi January 1999 (has links)
This thesis describes a framework for the high level control of an autonomous unmanned spacecraft. Greater autonomy than currently exist is required for unmanned spacecraft to enable missions to distant planets and bodies. One reason for this is that the signal return time is too long to accommodate real-time control from the ground. A second reason is that spacecraft travelling to bodies where little is known of the environment (e.g. asteroids) must have the capability to respond to unplanned events. In addition, autonomy can help reduce mission operations costs, a very important factor in the current climate where more is expected from space missions at a lower cost. The thesis proposes a novel architecture for an autonomous unmanned spacecraft, based on Distributed Artificial Intelligence (DAI), and more specifically based on the multi-agent paradigm. The proposed model for spacecraft control is decentralised. In this architecture, the spacecraft is made up of agents; the traditional ground-based controller is one agent. The spacecraft is goal-driven; it receives high level goals from the ground. The planning and scheduling of activities to achieve these goals is carried out on-board the spacecraft. The spacecraft is also event-driven; it reacts to events that occur on-board the spacecraft as well as in the environment. A DAI architecture requires a co-ordination mechanism, and a communication structure. Also, distributed versions of algorithms must be provided. In this thesis, co-ordination with and without explicit communication and distributed scheduling were investigated, and a framework proposed for both these issues. An autonomous spacecraft must have inference capability for on-board decision making to enable it to respond to unplanned events. Probabilistic reasoning in the form of Bayesian networks was used to provide the spacecraft with the capability for on-board decision making. Situations may arise where the spacecraft must make decisions with uncertain or incomplete information. The issue of decision making with uncertain or incomplete knowledge (e.g. co-ordination without explicit communication) was investigated using domain specific scenarios. Spacecraft resources are typically very limited in capacity. On-board resource management should result in more efficient use of resources. A framework for an on-board resource manager was defined and implemented using reinforcement learning. A distributed version of the scheduling algorithm using reinforcement learning was developed. Thus, this thesis describes and investigates an architectural framework for a multi-agent approach to spacecraft control.
209

Flight Testing Small UAVs for Aerodynamic Parameter Estimation

Chase, Adam Thomas 01 June 2014 (has links)
A flight data acquisition system was developed to aid unmanned vehicle designers in verifying the vehicle's design performance. The system is reconfigurable and allows the designer to choose the correct combination of complexity, risk, and cost for a given flight test. The designer can also reconfigure the system to meet packaging and integration requirements. System functionality, repeatbility, and accuracy was validated by collecting data during multiple flights of a radio-controlled aircraft. Future work includes sensor fusion, thrust prediction methods, stability and control derivative estimation, and growing Cal Poly's small-scale component aerodynamic database.
210

Modeling and Testing Powerplant Subsystems of a Solar UAS

Bughman, Luke J. 01 October 2019 (has links)
In order to accurately conduct the preliminary and detailed design of solar powered Unmanned Aerial Systems (UAS), it is necessary to have a thorough understanding of the systems involved. In particular, it is desirable to have mathematical models and analysis tools describing the energy income and expenditure of the vehicle. Solar energy income models may include available solar irradiance, photovoltaic array power output, and maximum power point tracker efficiency. Energy expenditure models include battery charging and discharging characteristics, propulsion system efficiency, and aerodynamic efficiency. In this thesis, a series of mathematical models were developed that characterize the performance of these systems. Several of these models were then validated against test data. Testing was conducted on specific components used by a solar UAS designed and built by students at the California Polytechnic State University, San Luis Obispo, which completed a six-hour flight relying only on solar energy in May 2019. Results indicate that, while some models accurately predicted test outcomes, others still need further improvement. While these models may be useful during the preliminary and detailed design phases of a solar powered UAS, specific component testing should be conducted to converge on the most desired design solution.

Page generated in 0.068 seconds