• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 12
  • 9
  • 9
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Opportunistic experiments to constrain aerosol effective radiative forcing

Christensen, Matthew W., Gettelman, Andrew, Cermak, Jan, Dagan, Guy, Diamond, Michael, Douglas, Alyson, Feingold, Graham, Glassmeier, Franziska, Goren, Tom, Grosvenor, Daniel P., Gryspeerdt, Edward, Kahn, Ralph, Li, Zhanqing, Ma, Po-Lun, Malavelle, Florent, McCoy, Isabel L., McCoy, Daniel T., McFarquhar, Greg, Mülmenstädt, Johannes, Pal, Sandip, Possner, Anna, Povey, Adam, Quaas, Johannes, Rosenfeld, Daniel, Schmidt, Anja, Schrödner, Roland, Sorooshian, Armin, Stier, Philip, Toll, Velle, Watson-Parris, Duncan, Wood, Robert, Yang, Mingxi, Yuan, Tianle 09 November 2022 (has links)
Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.
12

Assessment of CALIOP-Derived CCN Concentrations by In Situ Surface Measurements

Choudhury, Goutam, Tesche, Matthias 27 October 2023 (has links)
The satellite-based cloud condensation nuclei (CCN) proxies used to quantify the aerosolcloud interactions (ACIs) are column integrated and do not guarantee the vertical co-location of aerosols and clouds. This has encouraged the use of height-resolved measurements of spaceborne lidars for ACI studies and led to advancements in lidar-based CCN retrieval algorithms. In this study, we present a comparison between the number concentration of CCN (nCCN) derived from ground-based in situ and spaceborne lidar cloud-aerosol lidar with orthogonal polarization (CALIOP) measurements. On analysing their monthly time series, we found that about 88% of CALIOP nCCN estimates remained within a factor of 1.5 of the in situ measurements. Overall, the CALIOP estimates of monthly nCCN were in good agreement with the in situ measurements with a normalized mean error of 71%, normalized mean bias of 39% and correlation coefficient of 0.68. Based on our comparison results, we point out the necessary measures that should be considered for global nCCN retrieval. Our results show the competence of CALIOP in compiling a global height- and type-resolved nCCN dataset for use in ACI studies.
13

Mixed-phase regime cloud thinning could help restore sea ice

Villanueva, Diego, Possner, Anna, Neubauer, David, Gasparini, Blaž, Lohmann, Ulrike, Tesche, Matthias 30 September 2024 (has links)
Cloud geoengineering approaches aim to mitigate global warming by seeding aerosols into clouds to change their radiative properties and ocurrence frequency. Ice-nucleating particles (INPs) can enhance droplet freezing in clouds, reducing their water content. Until now, the potential of these particles has been mainly studied for weather modification and cirrus cloud thinning. Here, using a cloud-resolving model and a climate model we show that INPs could decrease the heat-trapping effect of mixed-phase regime clouds over the polar oceans during winter, slowing down sea-ice melting and partially offsetting the ice-albedo feedback. We refer to this concept as mixed-phase regime cloud thinning (MCT). We estimate that MCT could offset about 25% of the expected increase in polar sea-surface temperature due to the doubling of CO2. This is accompanied by an annual increase in sea-ice surface area of 8% around the Arctic, and 14% around Antarctica.
14

On the representation of sub-grid scale phenomena and its impact on clouds properties and climate

Morales Betancourt, Ricardo 13 January 2014 (has links)
This thesis addresses a series of questions related to the problem of achieving reliable and physically consistent representations of aerosol-cloud interaction in global circulation models (GCM). In-situ data and modeling tools are used to develop and evaluate novel parameterization schemes for the process of aerosol activation for applications in GCM simulations. Atmospheric models of different complexity were utilized, ranging from detailed Lagrangian parcel model simulations of the condensational growth of droplets, to one-dimensional single column model with aerosol and cloud microphysics, and finally GCM simulations performed with the Community Atmosphere Model (CAM). A scheme for mapping the sub-grid scale variability of cloud droplet number concentrations (CDNC) to a number of microphysical process rates in a GCM was tested, finding that neglecting this impact can have substantial influences in the integrated cloud properties. A comprehensive comparison and evaluation of two widely used, physically-based activation parameterizations was performed in the framework of CAM5.1. This was achieved by utilizing a numerical adjoint sensitivity approach to comprehensively investigate their response under the wide range of aerosol and dynamical conditions encountered in GCM simulations. As a result of this, the specific variables responsible for the observed differences in the physical response across parameterizations are encountered, leading to further parameterization improvement.
15

Microphysical properties of aerosol particles in the trade wind regime and their influence on the number concentration of activated particles in trade wind cumulus clouds

Ditas, Florian 21 July 2014 (has links)
Im Rahmen dieser Dissertation wurden die mikrophysikalischen Eigenschaften von Aerosolpartikeln im Passatklima und deren Einfluss auf Passatwolken untersucht. Die Arbeit basiert auf Messungen mit der hubschrauber-getragenen Messplattform ACTOS. Es wurden zwei Intensivmesskampagnen im November 2010 und April 2011 durchgeführt, welche 31 Forschungsflüge in der Nähe der östlichsten Karibik-Insel Barbados umfassen. Die gemessenen Partikel-Anzahl-Größenverteilungen weisen meist eine bimodale Verteilung auf, welche typisch für marines Aerosol ist. Im Vergleich zu kontinentalen Verhältnissen ist die Totalanzahlkonzentration der Aerosolpartikel von 100-1000 cm-3 gering. Eine statistische Analyse einzelner Wolken lässt auf typische Anzahlkonzentrationen von aktivierten Partikeln bis zu 400 cm-3 und minimale Aktivierungsdurchmesser in der Größenordnung von 40 nm bis 180 nm mit entsprechenden maximalen kritischen Übersättigungen zwischen 0.1 und 0.9% schließen. Zusätzlich wurden wesentliche Einflussfaktoren auf die Anzahlkonzentration aktivierter Partikel identifiziert: 1) Vertikalwind an der Wolkenunterkante und 2) Anzahlkonzentration der verfügbaren Aerosolpartikel, die als Wolkenkondensationskeime dienen können. Mit Hilfe von Beobachtungsdaten und einer umfassenden Sensitivitätsstudie unter Verwendung eines Luftpaketmodells mit spektraler Wolkenmikrophysik wurde die Sensitivität der Wolkentropfenkonzentration gegenüber Änderungen in den physikalischen Eigenschaften und der Hygroskopizität von Aerosolpartikeln untersucht. Die beobachteten Ergebnisse in Form von sogenannten \"aerosol-cloud interaction metrics\" (ACI, Maß für den Einfluss von Änderungen einer bestimmten Aerosoleigenschaft auf eine bestimmte Wolkeneigenschaft) zeigen eine sehr hohe Sensitivität der Tropfenanzahlkonzentration gegenüber Änderungen in der Partikelanzahlkonzentration (in der Nähe des physikalisch sinnvollen Maximums von eins). Diese abgeleiteten ACI-Metriken eignen sich als Basis für Abschätzungen des indirekten Strahlungsantriebes auf der Grundlage von Beobachtungen. Zusätzliche Modellrechnungen umfassen die gemessenen Partikeleigenschaften während der gesamten Kampagnen. Die Ergebnisse unterstreichen besonders die Bedeutung der physikalischen Partikeleigenschaften. Die Suszeptibilität der Tropfenanzahlkonzentration gegenüber Änderungen in der Partikelanzahlkonzentration (Wertebereich: 0-1) ist am größten (> 0.9) für den Fall eines stark ausgeprägten Akkumulations-Mode und nimmt ab, je stärker der Aitken-Mode ausgeprägt ist (> 0.6). Im Gegensatz dazu ist die Sensitivität der Tropfenanzahlkonzentration gegenüber Änderungen in der Hygroskopizität der Partikel generell geringer (< 0.4). Die hier präsentierten Ergebnisse stellen eine umfangreiche Charakterisierung der Aerosol- und Wolkeneigenschaften im Passatklima dar und können helfen, die vorhergesagte Sensitivität der Wolkeneigenschaften in Klimamodellen gegenüber Änderungen der Aerosoleigenschaften zu evaluieren und deren Unsicherheiten zu reduzieren. / Within the scope of this dissertation, microphysical properties of aerosol particles in the trade wind regime and their influence on microphysical properties of trade wind cumulus clouds have been investigated. The study is based on measurements performed with the helicopter-borne measurement platform ACTOS. Two intensive measurement periods were carried out in November 2010 and April 2011, including 31 research flights close to the easternmost Caribbean island - Barbados. Aerosol particle number size distributions show a bimodal structure, which is typical for marine aerosol particles. The total particle concentrations of approximately 100-1000 cm-3 are compared to continental conditions relatively low. A statistical analysis of individual clouds reveals typical number concentrations of activated particles up to 400 cm-3 and minimum activation diameters between 40 and 180 nm with corresponding critical supersaturations between 0.1 and 1%. Additionally, major factors affecting the number concentration of activated particles are identifed: 1) vertical wind velocity at cloud base and, 2) number concentration of available aerosol particles as potential cloud condensation nuclei. With the help of observational data and a comprehensive sensitivity study using a spectral cloud microphysical parcel model, the sensitivity of the cloud droplet number concentration towards changes in the microphysical aerosol particle properties and their hygroscopicity has been investigated. Observational results in terms of so-called aerosol-cloud interactions metrics (describes a measure of the influence of changes in one specific aerosol property on one specific cloud property) show a very high sensitivity (close to the physical meaningful maximum of unity) of the number concentration of activated particles towards changes in the particle number concentration. These aerosol-cloud interaction metrics can be used as basis for observationally-based radiative forcing estimates. Additional model calculations cover the entire range of the observed aerosol properties during both campaigns. The results underline particularly the importance of the physical aerosol properties. The calculated susceptibility (valuation: 0-1) of the droplet number concentration towards changes in the particle number concentration is highest (> 0.9) for accumulation mode dominated particle number size distributions and decreases for Aitken mode dominated size distributions (> 0.6). In contrast, for the modeled parameter space, the sensitivity towards changes in the particle hygroscopicity is generally below 0.4. The findings presented in this study represent a comprehensive characterization of aerosol and cloud microphysical properties in the trade wind regime. These findings may help to evaluate the predicted sensitivity of cloud microphysical properties by climate models towards changes in particle microphysical properties and reduce the uncertainties in climate sensitivity estimates.
16

A First Case Study of CCN Concentrations from Spaceborne Lidar Observations

Georgoulias, Aristeidis K., Marinou, Eleni, Tsekeri, Alexandra, Proestakis, Emmanouil, Akritidis, Dimitris, Alexandri, Georgia, Zanis, Prodromos, Balis, Dimitris, Marenco, Franco, Tesche, Matthias, Amiridis, Vassilis 21 April 2023 (has links)
We present here the first cloud condensation nuclei (CCN) concentration profiles derived from measurements with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), for different aerosol types at a supersaturation of 0.15%. CCN concentrations, along with the corresponding uncertainties, were inferred for a nighttime CALIPSO overpass on 9 September 2011, with coincident observations with the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft, within the framework of the Evaluation of CALIPSO’s Aerosol Classification scheme over Eastern Mediterranean (ACEMED) research campaign over Thessaloniki, Greece. The CALIPSO aerosol typing is evaluated, based on data from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. Backward trajectories and satellite-based fire counts are used to examine the origin of air masses on that day. Our CCN retrievals are evaluated against particle number concentration retrievals at different height levels, based on the ACEMED airborne measurements and compared against CCN-related retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard Terra and Aqua product over Thessaloniki showing that it is feasible to obtain CCN concentrations from CALIPSO, with an uncertainty of a factor of two to three.
17

Cloud condensation nuclei concentrations from spaceborne lidar measurements – Methodology and validation

Choudhury, Goutam 30 January 2023 (has links)
Aerosol-cloud interactions are the most uncertain component of the anthropogenic radiative forcing. A substantial part of this uncertainty comes from the limitations of currently used spaceborne CCN proxies that (i) are column integrated and do not guarantee vertical co-location of aerosols and clouds, (ii) have retrieval issues over land, and (iii) do not account for aerosol hygroscopicity. A possible solution to overcome these limitations is to use height-resolved measurements of the spaceborne lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. This thesis presents a novel CCN retrieval algorithm based on Optical Modelling of CALIPSO Aerosol Microphysics (OMCAM) that is designed particularly for CALIPSO lidar measurements, along with its validation with airborne and surface in-situ measurements. \noindent OMCAM uses a set of normalized size distributions from the CALIPSO aerosol model and modifies them to reproduce the CALIPSO measured aerosol extinction coefficient. It then uses the modified size distribution and aerosol type-specific CCN parameterizations to estimate the number concentration of CCN (nCCN) at different supersaturations. The algorithm accounts for aerosol hygroscopicity by using the kappa parametrization. Sensitivity studies suggest that the uncertainty associated with the output nCCN may range between a factor of 2 and 3. OMCAM-estimated aerosol number concentrations (ANCs) and nCCN are validated using temporally and spatially co-located in-situ measurements. In the first part of validation, the airborne observations collected during the Atmospheric Tomography (ATom) mission are used. It is found that the OMCAM estimates of ANCs are in good agreement with the in-situ measurements with a correlation coefficient of 0.82, an RMSE of 247.2 cm-3, and a bias of 44.4 cm-3. The agreement holds for all aerosol types, except for marine aerosols, in which the OMCAM estimates are about an order of magnitude smaller than the in-situ measurements. An update of the marine model in OMCAM improve the agreement significantly. In the second part of validation, the OMCAM-estimated ANC and nCCN are compared to measurements from seven surface in-situ stations covering a variety of aerosol environments. The OMCAM-estimated monthly nCCN are found to be in reasonable agreement with the in-situ measurements with a 39 % normalized mean bias and 71 % normalized mean error. Combining the validation studies, the algorithm outputs are found to be consistent with the co-located in-situ measurements at different altitude ranges over both land and ocean. Such an agreement has not yet been achieved for spaceborne-derived CCN concentrations and demonstrates the potential of using CALIPSO lidar measurements for inferring global 3D climatologies of CCN concentrations related to different aerosol types.:1 Introduction . . . . . . . . . . . . . . . 1 1.1 Background: Aerosols in the climate system . . . . . . . . . . . . . . . . . 1 1.1.1 Aerosol-induced effective radiative forcing . . . . . . . . . . . . . . 3 1.1.2 Significance of aerosol-cloud interactions . . . . . . . . . . . . . . . 3 1.2 Observation-based ACI studies . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 In-situ studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Spaceborne studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Spaceborne CCN proxies and their limitations . . . . . . . . . . . . . . . . 8 1.4 CCN concentrations from lidars . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Objective: CCN from spaceborne lidar . . . . . . . . . . . . . . . . . . . . 11 2 Paper 1: Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Data and retrievals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 CALIPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 MOPSMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 POLIPHON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Aerosol size distribution . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Aerosol hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 CCN parameterizations . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Application of OMCAM to CALIPSO retrieval . . . . . . . . . . . 23 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Comparison with POLIPHON . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Paper 2: Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements . . . . . . . . . . . . . . . 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Data, retrievals, and methods . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 ATom 3.2.2 CALIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.3 Aerosol number concentration from CALIOP . . . . . . . . . . . . 44 3.2.4 Data matching and comparison . . . . . . . . . . . . . . . . . . . . 48 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Example cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 General findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Paper 3: Assessment of CALIOP-derived CCN concentrations by in situ surface measurements . . . . . . . . . . . . . . . 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 In situ observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 CALIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.3 Comparison Methodology . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Comparison of CCN Concentrations . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Summary and conclusions . . . . . . . . . . . . . . . 79 6 Outlook . . . . . . . . . . . . . . . 83 References . . . . . . . . . . . . . . . 88 List of Abbreviations . . . . . . . . . . . . . . . 107 List of Variables . . . . . . . . . . . . . . . 109 List of Figures . . . . . . . . . . . . . . . 111 List of Tables . . . . . . . . . . . . . . . 113 A List of Publications . . . . . . . . . . . . . . . 115 B Acknowledgements . . . . . . . . . . . . . . . 117
18

Dual-field-of-view Raman lidar measurements of cloud microphysical properties

Schmidt, Jörg 11 August 2014 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurde eine neuartige Lidartechnik in ein leistungsstarkes Lidar-System implementiert. Mit Hilfe des realisierten Aufbaus wurden Aerosol-Wolken-Wechselwirkungen in Flüssigwasserwolken über Leipzig untersucht. Die angewandte Messmethode beruht auf der Detektion von Licht, das an Wolkentröpfchen mehrfach in Vorwärtsrichtung gestreut und an Stickstoffmolekülen inelastisch zurückgestreut wurde. Dabei werden zwei Gesichtsfelder unterschiedlicher Größe verwendet. Ein Vorwärtsiterations-Algorithmus nutzt die gewonnenen Informationen zur Ermittlung von Profilen wolkenmikrophysikalischer Eigenschaften. Es können der Extinktionskoeffizient, der effektive Tröpfchenradius, der Flüssigwassergehalt sowie die Tröpfchenanzahlkonzentration bestimmt werden. Weiterhin wird die exakte Erfassung der Wolkenunterkantenhöhe durchdie eingesetzte Messtechnik ermöglicht. Darüber hinaus ist die Bestimmung von Aerosoleigenschaften mit dem eingesetzten Lidargerät möglich. Die Qualität des realisierten Messaufbaus wurde geprüft und eine Fehleranalyse durchgeführt. Unter anderem wurde der aus einer Wolkenmessung bestimmte Flüssigwassergehalt mit einem Mikrowellen-Radiometer bestätigt. Anhand von Fallbeispielen konnte das Potential dieser Messtechnik demonstriert werden. Die Bedeutung von Profilinformationen von Wolkeneigenschaften für die Untersuchung von Aerosol-Wolken-Wechselwirkungen wurde gezeigt. Weiterhin wurde mit Hilfe eines Doppler-Windlidars der Einfluss der Vertikalwindgeschwindigkeit auf Wolkeneigenschaften und damit Aerosol-Wolken-Wechselwirkungen verdeutlicht. Neunundzwanzig Wolkenmessungen wurden für eine statistische Auswertung bezüglich Aerosol-Wolken-Wechselwirkungen genutzt. Dabei konnte erstmalig die Abhängigkeit von Aerosol-Wolken-Wechselwirkungen von der Wolkeneindringtiefe untersucht werden. Es wurde festgestellt, dass diese auf die untersten 70m von Wolken beschränkt sind. Weiterhin wurden deutlich stärkere Aerosol-Wolken-Wechselwirkungen in Wolkengebieten festgestellt, die von Aufwinden dominiert werden. Für der Quantifizierung der Stärke von Aerosol-Wolken-Wechselwirkungen wurden ACIN-Werte genutzt, welche den Zusammenhang zwischen der Tröpfchenanzahlkonzentration und dem Aerosol-Extinktionskoeffizienten beschreiben. Dabei wurde zwischen der Untersuchung der entsprechenden mikrophysikalischen Prozesse und deren Bedeutung für die Wolkenalbedo und damit dem Strahlungsantrieb der Wolken unterschieden. Für die erstgenannte Zielstellung wurde ein ACIN-Wert von 0.80 +/- 0.40 ermittelt, für Letztere 0.13 +/- 0.07.
19

Extension and application of a tropospheric aqueous phase chemical mechanism (CAPRAM) for aerosol and cloud models / Erweiterung und Anwendung eines troposphärischen Flüssigphasenchemiemechanismus (CAPRAM) für Aerosol- und Wolkenmodelle

Bräuer, Peter 19 October 2015 (has links) (PDF)
The ubiquitous abundance of organic compounds in natural and anthorpogenically influenced eco-systems has put these compounds into the focus of atmospheric research. Organic compounds have an impact on air quality, climate, and human health. Moreover, they affect particle growth, secondary organic aerosol (SOA) formation, and the global radiation budget by altering particle properties. To investigate the multiphase chemistry of organic compounds and interactions with the aqueous phase in the troposphere, modelling can provide a useful tool. The oxidation of larger organic molecules to the final product CO2 can involve a huge number of intermediate compounds and tens of thousands of reactions. Therefore, the creation of explicit mechanisms relies on automated mechanism construction. Estimation methods for the prediction of the kinetic data needed to describe the degradation of these intermediates are inevitable due to the infeasibility of an experimental determination of all necessary data. Current aqueous phase descriptions of organic chemistry lag behind the gas phase descriptions in atmospheric chemical mechanisms despite its importance for the multiphase chemistry of organic compounds. In this dissertation, the gas phase mechanism Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) has been advanced by a protocol for the description of the oxidation of organic compounds in the aqueous phase. Therefore, a database with kinetic data of 465 aqueous phase hydroxyl radical and 129 aqueous phase nitrate radical reactions with organic compounds has been compiled and evaluated. The database was used to evaluate currently available estimation methods for the prediction of aqueous phase kinetic data of reactions of organic compounds. Among the investigated methods were correlations of gas and aqueous kinetic data, kinetic data of homologous series of various compound classes, reactivity comparisons of inorganic radical oxidants, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). Evans-Polanyi-type correlations have been improved for the purpose of automated mechanism self-generation of mechanisms with large organic molecules. A protocol has been designed based on SARs for hydroxyl radical reactions and the improved Evans-Polanyi-type correlations for nitrate radical reactions with organic compounds. The protocol was assessed in a series of critical sensitivity studies, where uncertainties of critical parameters were investigated. The advanced multiphase generator GECKO-A was used to generate mechanisms, which were applied in box model studies and validated against two sets of aerosol chamber experiments. Experiments differed by the initial compounds used (hexane and trimethylbenzene) and the experimental conditions (UV-C lights off/on and additional in-situ hydroxyl radical source no/yes). Reasonable to good agreement of the modelled and experimental results was achieved in these studies. Finally, GECKO-A was used to create two new CAPRAM version, where, for the first time, branchingratios for different reaction pathways were introduced and the chemistry of compounds with up to four carbon atoms has been extended. The most detailed mechanism comprises 4174 compounds and 7145 processes. Detailed investigations were performed under real tropospheric conditions in urban and remote continental environments. Model results showed significant improvements, especially in regard to the formation of organic aerosol mass. Detailed investigations of concentration-time profiles and chemical fluxes refined the current knowledge of the multiphase processing of organic compounds in the troposphere, but also pointed at current limitations of the generator protocol, the mechanisms created, and current understanding of aqueous phase processes of organic compounds. / Das zahlreiche Vorkommen organischer Verbindungen in natürlichen und anthropogen beeinflussten Ökosystemen hat diese Verbindungen in den Fokus der Atmosphärenforschung gerückt. Organische Verbindungen beeinträchtigen die Luftqualität, die menschliche Gesundheit und das Klima. Weiterhin werden Partikelwachstum und -eigenschaften, sekundäre organische Partikelbildung und dadurch der globale Strahlungshaushalt durch sie beeinflusst. Um die troposphärische Multiphasenchemie organischer Verbindungen und Wechselwirkungen mit der Flüssigphase zu untersuchen, sind Modellstudien hilfreich. Die Oxidation großer organischer Moleküle führt zu einer Vielzahl an Zwischenprodukten. Der Abbau erfolgt in unzähligen Reaktionen bis hin zum Endprodukt CO2. Bei der Entwicklung expliziter Mechanismen muss deshalb für diese Verbindungen auf computergestützte, automatisierte Methoden zurückgegriffen werden. Abschätzungsmethoden für die Vorhersage kinetischer Daten zur Beschreibung des Abbaus der Zwischenprodukte sind unabdingbar, da eine experimentelle Bestimmung aller benötigten Daten nicht realisierbar ist. Die derzeitige Beschreibung der Flüssigphasenchemie unterliegt deutlich den Beschreibungen der Gasphase in atmosphärischen Chemiemechanismen trotz deren Relevanz für die Multiphasenchemie. In dieser Arbeit wurde der Gasphasenmechanismusgenerator GECKO-A (“Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere”) um ein Protokoll zur Oxidation organischer Verbindungen in der Flüssigphase erweitert. Dazu wurde eine Datenbank mit kinetischen Daten von 465 Hydroxylradikal- und 129 Nitratradikalreaktionen mit organischen Verbindungen angelegt und evaluiert. Mit Hilfe der Datenbank wurden derzeitige Abschätzungsmethoden für die Vorhersage kinetischer Daten von Flüssigphasenreaktionen organischer Verbindungen evaluiert. Die untersuchten Methoden beinhalteten Korrelationen kinetischer Daten aus Gas- und Flüssigphase, homologer Reihen verschiedener Stoffklassen, Reaktivitätsvergleiche, Evans-Polanyi-Korrelationen und Struktur-Reaktivitätsbeziehungen. Für die Mechanismusgenerierung großer organischer Moleküle wurden die Evans-Polanyi-Korrelationen in dieser Arbeit weiterentwickelt. Es wurde ein Protokol für die Mechanismusgenerierung entwickelt, das auf Struktur-Reaktivitätsbeziehungen bei Reaktionen von organischen Verbindungen mit OH-Radikalen und auf den erweiterten Evans-Polanyi-Korrelationen bei NO3-Radikalreaktionen beruht. Das Protokoll wurde umfangreich in einer Reihe von Sensitivitätsstudien getestet, um Unsicherheiten kritischer Parameter abzuschätzen. Der erweiterte Multiphasengenerator GECKO-A wurde dazu verwendet, neue Mechanismen zu generieren, die in Boxmodellstudien gegen Aerosolkammerexperimente evaluiert wurden. Die Experimentreihen unterschieden sich sowohl in der betrachteten Ausgangssubstanz (Hexan und Trimethylbenzen) und dem Experimentaufbau (ohne oder mit UV-C-Photolyse und ohne oder mit zusätzlicher partikulärer Hydroxylradikalquelle). Bei den Experimenten konnte eine zufriedenstellende bis gute Übereinstimmung der experimentellen und Modellergebnisse erreicht werden. Weiterhin wurde GECKO-A verwendet, um zwei neue CAPRAM-Versionen mit bis zu 4174 Verbindungen und 7145 Prozessen zu generieren. Erstmals wurden Verzweigungsverhältnisse in CAPRAM eingeführt. Außerdem wurde die Chemie organischer Verbindungen mit bis zu vier Kohlenstoffatomen erweitert. Umfangreiche Untersuchungen unter realistischen troposphärischen Bedingungen in urbanen und ländlichen Gebieten haben deutliche Verbesserungen der erweiterten Mechanismen besonders in Bezug auf Massenzuwachs des organischen Aerosolanteils gezeigt. Das Verständnis der organischen Multiphasenchemie konnte durch detaillierte Untersuchungen zu den Konzentrations-Zeit-Profilen und chemischen Flüssen vertieft werden, aber auch gegenwärtige Limitierungen des Generators, der erzeugten Mechanismen und unseres Verständnisses für Flüssigphasenprozesse organischer Verbindungen aufgezeigt werden.
20

Dual-field-of-view Raman lidar measurements of cloud microphysical properties: Investigation of aerosol-cloud interactions

Schmidt, Jörg 27 June 2014 (has links)
Im Rahmen der vorliegenden Arbeit wurde eine neuartige Lidartechnik in ein leistungsstarkes Lidar-System implementiert. Mit Hilfe des realisierten Aufbaus wurden Aerosol-Wolken-Wechselwirkungen in Flüssigwasserwolken über Leipzig untersucht. Die angewandte Messmethode beruht auf der Detektion von Licht, das an Wolkentröpfchen mehrfach in Vorwärtsrichtung gestreut und an Stickstoffmolekülen inelastisch zurückgestreut wurde. Dabei werden zwei Gesichtsfelder unterschiedlicher Größe verwendet. Ein Vorwärtsiterations-Algorithmus nutzt die gewonnenen Informationen zur Ermittlung von Profilen wolkenmikrophysikalischer Eigenschaften. Es können der Extinktionskoeffizient, der effektive Tröpfchenradius, der Flüssigwassergehalt sowie die Tröpfchenanzahlkonzentration bestimmt werden. Weiterhin wird die exakte Erfassung der Wolkenunterkantenhöhe durchdie eingesetzte Messtechnik ermöglicht. Darüber hinaus ist die Bestimmung von Aerosoleigenschaften mit dem eingesetzten Lidargerät möglich. Die Qualität des realisierten Messaufbaus wurde geprüft und eine Fehleranalyse durchgeführt. Unter anderem wurde der aus einer Wolkenmessung bestimmte Flüssigwassergehalt mit einem Mikrowellen-Radiometer bestätigt. Anhand von Fallbeispielen konnte das Potential dieser Messtechnik demonstriert werden. Die Bedeutung von Profilinformationen von Wolkeneigenschaften für die Untersuchung von Aerosol-Wolken-Wechselwirkungen wurde gezeigt. Weiterhin wurde mit Hilfe eines Doppler-Windlidars der Einfluss der Vertikalwindgeschwindigkeit auf Wolkeneigenschaften und damit Aerosol-Wolken-Wechselwirkungen verdeutlicht. Neunundzwanzig Wolkenmessungen wurden für eine statistische Auswertung bezüglich Aerosol-Wolken-Wechselwirkungen genutzt. Dabei konnte erstmalig die Abhängigkeit von Aerosol-Wolken-Wechselwirkungen von der Wolkeneindringtiefe untersucht werden. Es wurde festgestellt, dass diese auf die untersten 70m von Wolken beschränkt sind. Weiterhin wurden deutlich stärkere Aerosol-Wolken-Wechselwirkungen in Wolkengebieten festgestellt, die von Aufwinden dominiert werden. Für der Quantifizierung der Stärke von Aerosol-Wolken-Wechselwirkungen wurden ACIN-Werte genutzt, welche den Zusammenhang zwischen der Tröpfchenanzahlkonzentration und dem Aerosol-Extinktionskoeffizienten beschreiben. Dabei wurde zwischen der Untersuchung der entsprechenden mikrophysikalischen Prozesse und deren Bedeutung für die Wolkenalbedo und damit dem Strahlungsantrieb der Wolken unterschieden. Für die erstgenannte Zielstellung wurde ein ACIN-Wert von 0.80 +/- 0.40 ermittelt, für Letztere 0.13 +/- 0.07.

Page generated in 0.1369 seconds