• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 11
  • 6
  • 4
  • 2
  • Tagged with
  • 46
  • 46
  • 13
  • 11
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hnací ústrojí desetiválcového leteckého motoru / Powertrain design of a ten-cylinder aircraft engine

Kopřiva, Martin January 2008 (has links)
Configuration of the powertrain of a flat-engine with ordered basic parameters is the theme of this final thesis which name is Powertrain design of ten-cylinder aircraft engine. This thesis is occupied with configuration design of the crank mechanism and firing order, balancing of centrifugal and reciprocating forces thein moments, conceptual design crankshaft and its stress calculation of torsional vibrations.
32

Hnací ústrojí čtyřválcového leteckého motoru / Powertrain design of a four-cylinder aircraft engine

Příborský, Vladimír January 2008 (has links)
This thesis named Powertrain of an four-cylinder aircraft engine dealing with configuration of the powertrain of a flat four-cylinder engine with ordered basic parameters. The thesis is focused on configuration design of the crank machanism and sequence ignition, balancing of centrifugal and reciprocating forces and their moment, conceptual design of crankshaft and its stress calculation. The thesis describing calculation of torsional vibration as well.
33

Návrh kanálu olejového chladiče pro modernizovanou motorovou gondolu letounu L410NG / Design of cooling air channel for oil cooler installation in reshaped engine nacelle of L410NG aircraft

Fazekaš, Slavomír January 2015 (has links)
This thesis describ es a design of co oling channel for the engine installation to the L-410NG aircraft. Firstly, it was compiled on the basis of analytical calculation of channel mo del and afterward underwent CFD analysis. In conclusion, the flowing of analytic calculation characteristics are compared with CFD analysis and there are also describ ed p ossibilities of flowing improvement for next channel mo dification.
34

Analysis and optimal design of a titanium aircraft bracket using topology optimization

Curwen, Vincent, Saxin, Alexander January 2021 (has links)
Sustainable engineering within product development is becoming increasingly important with the ever-growing amounts of resources used to sustain the human way of life in modern times. An effective way of helping to deal with this problem is to reduce the resources used in products and components across the world. This thesis explores the effectiveness of the topology optimization method in achieving significant material reductions whilst maintaining structural strength and integrity when designing an aircraft component. The part is an engine handling mounting bracket which will be optimized to be produced by additive manufacturing, and so restrictions imposed by traditional manufacturing methods are not considered, allowing for larger material reductions to be achieved. The original bracket part was provided by GE Electric, and the computer software Abaqus computer aided engineering with integrated TOSCA was used to solve the problem. Two trials were conducted, with the first being used to gain knowledge and understanding of the optimization features of the software. The basic requirements for the optimized design were that it should be able to withstand four given static load cases without undergoing plastic deformation, and these load cases were applied separately in trial 1 for simplicity. The second trial was conducted with a higher complexity, utilising multi-objective topology optimization which allowed the load cases to be weighted individually whilst being applied simultaneously during optimization. The resulting bracket part that was created with the help of the optimized topology from trial 2 reduced the volume of the original part by over 75%. This also left potential for further material reductions as the optimized part did not undergo plastic deformation when subject to any of the four load cases of the study. In conclusion, topology optimization seems to be extremely helpful when designing components that have clearly defined load cases, producing results that designers and engineers can have confidence in. The method does however have its flaws, such as difficulties in utilising the optimized topology directly to create a computer aided design part file. The post-processing process needed to achieve such a part is also time-consuming although it must be implemented to create a digital part that can be analysed and verified by FEA.
35

A UNIFIED NONLINEAR ADAPTIVE APPROACH FOR THE FAULT DIAGNOSIS OF AIRCRAFT ENGINES

Avram, Remus C. 20 April 2012 (has links)
No description available.
36

Eco-inspired Robust Control Design for Linear Dynamical Systems with Applications

Devarakonda, Nagini 20 October 2011 (has links)
No description available.
37

Comparative Analysis of Serrated Trailing Edge Designs on Idealized Aircraft Engine Fan Blades for Noise Reduction

Geiger, Derek Henry 26 January 2005 (has links)
The effects of serrated trailing edge designs, designed for noise reduction, on the flow-field downstream of an idealized aircraft engine fan blade row were investigated in detail. The measurements were performed in the Virginia Tech low speed linear cascade tunnel on one set of baseline GE-Rotor-B blades and four sets of GE-Rotor-B blades with serrated trailing edges. The four serrated blade sets consisted of two different serration sizes (1.27 cm and 2.54 cm) and for each different serration size a second set of blades with added trailing edge camber. The cascade row consisted of 8 GE-Rotor-B blades and 7-passages with adjustable tip gap settings. It had an inlet angle of 65.1º, stagger angle of 56.9º and a turning angle of 11.8º. The tunnel was operated with a tip gap setting of 1.65% chord, with a Reynolds number based on the chord of 390,000. Blade loading measurements performed on each set of blades showed that it was slightly dependent on the serration shape. As the serration size was increased the blade loading decreased, but adding droop increased the blade loading. The Pitot-static cross-sections showed that flow-fields near the upper and lower endwalls cascade tunnel were similar with the baseline or the serrated blade downstream of the blade row. In the wake region, the individual trailing edge serrations tips and valleys could be seen. As the wake convected downstream, the individual tips and valleys became less visible and the wake was more uniform in profile. The tip leakage vortex was only minimally affected by the trailing edge serrations. This conclusion was further reinforced by the three-component hot-wire cross-sectional measurements that were performed from the lower endwall to the mid-span of the blade. These showed that the mean streamwise velocity, turbulence kinetic energy and turbulence kinetic energy production in the tip leakage region were nearly the same for all four serrated blades as well as the baseline. The vorticity in this region was a more dependent on the serration shape and as a result increased with serration size compared to the baseline. Mid-span measurements performed with the three-component hot-wire showed the spreading rate of the wake and the decay rate of the wake centerline velocity deficit increased with serration size compared to the baseline case. Drooping of the trailing edge only minimally improved the spreading and decay rates. This improvement in these rates was predicted to reduce the tonal noise at the leading edge of the downstream stator vane because the periodic fluctuation associated with the sweeping of the rotor blade wakes across it, was due to the pitchwise variation in the mean streamwise velocity. The wakes were further compared to the mean velocity and turbulence profiles of plane wakes, which the baseline and the smallest serration size agreed the best. As the serration size was increased and drooping was added, the wakes became less like plane wakes. Spectral plots at the wake centerline in all three velocity directions showed some evidence of coherent motion in the wake as a result of vortex shedding. / Master of Science
38

Réalisation de matériaux composites à conductivité thermique accrue pour l’aéronautique / Enhanced SiC/SiC composites for high temperature applications

Griesser, Aurélia 17 December 2012 (has links)
Pour réduire les nuisances et pollutions émises par le transport aérien, une solution consisterait à remplacer les matériaux des pièces chaudes des moteurs d'avions par des composites à matrice céramique (CMC). Pour intégrer ces matériaux dans les moteurs, il est nécessaire de les adapter aux contraintes imposées par ce milieu (température≥1400°C, oxydation/corrosion), tout en garantissant des propriétés égales à celles des superalliages actuels (conductivité thermique, résistance mécanique). L'objectif de la thèse était de proposer une architecture de matériau présentant l'ensemble des propriétés demandées par le cahier des charges, d'élaborer ce composite et de le caractériser. Ce travail a permis d'identifier les phénomènes mis en jeu lors de l'élaboration des composites. L'optimisation du procédé, de l'architecture et de la composition du matériau a permis de fournir un CMC dense. Les caractérisations réalisées ont montré l'intérêt de ces matériaux pour l'application visée. / To reduce pollution emitted by air transport, high temperature materials used in hot parts of aircraft engines could be replaced by ceramic matrix composites (CMC). To integrate these materials, they must support the harsh environment encountered inside the engine (temperature ≥ 1400 ° C, oxidation / corrosion), while having properties equivalent to current superalloys (thermal conductivity, mechanical strength). This work was aimed to establish a material architecture presenting all properties required, and to develop and characterize this composite. This procedure has helped to identify the phenomena involved in the development of composites. Various optimizations, as process, material architecture and composition, have lead to the establishment of a dense CMC. Measured properties have proved that these materials can be used for the intended application.
39

Čtyřválcový řadový zážehový letecký motor / Four-cylinder in-line gasoline aircraft engine

Kučera, Ondřej January 2021 (has links)
The thesis deals with the structural design of a steel connecting rod for the aircraft engine Walter Mikron III, which is currently still manufactured and developed by company PARMA-TECHNIK, s.r.o. The proposed connecting rod would replace the current duralumin connecting rod. The work also contains a strength analysis of the designed component, in which it was aimed to verify the stress on the connecting rod, based on which the fatigue safety factor was performed. This is crucial for dynamically stressed parts of internal combustion engines. Furthermore, was investigated the effect of the change of the connecting rod on the torsional vibration of the crank mechanism. For this purpose, was built a discrete torsion model. The output of the whole work is the drawing documentation of the new connecting rod, meeting the requirements for application in an aircraft engine.
40

Investigation into submicrometer particle and gaseous emissions from airport ground running procedures

Mazaheri, Mandana January 2009 (has links)
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Page generated in 0.0635 seconds