• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 13
  • 10
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Performance of MIMO Space-Time Coding Algorithms on a Parallel DSP Test Platform

Neal, Beau C. 19 June 2007 (has links) (PDF)
Commercial Off The Shelf (COTS) hardware has the advantages of low cost, modularity, and is easily upgraded. For Multiple-Input Multiple-Output (MIMO) space-time algorithms to be practical they must have the processing capability to execute in real-time. This makes COTS ideal for real-time MIMO research where the processing power increases exponentially with a linear increase in antennas. The BYU Electrical Engineering wireless lab has designed and built an eight processor transmitter and a twenty processor receiver to research and develop MIMO wireless communication. The Alamouti, 2 x 2 and 4 x 4 differential space-time MIMO algorithms have been partially implemented on the receiver using a variety of common parallel processing topologies to include: bus, line/ring, star, grid, hypercube, binary tree, and pyramid. Processor and inter-processor communication benchmarks were measured and used to quickly explore the performance of the previously mentioned topologies without expending time and effort on a full implementation of these MIMO algorithms using each topology. This methodology has the benefit of the creation of software libraries that can be used for testing or for complete MIMO algorithm implementation in the future. This thesis shows that a simple bus-based topology gives the best results when combined with the 4 x 4 differential space-time algorithm. This thesis also shows that if the number of receiving channels and processors increase at the same rate as the 2 x 2 to the 4 x 4 differential cases, then the ratio of decoding processing time to inter-processor communication time is reduced. If this trend continues, inter-processor communication will require more processing time than the actual space-time decoding algorithm. Due to the exponential increase in required processing, doubling the processing requirements obtained from the 4 x 4 case is not an adequate solution to implement real-time 8 x 8 differential decoding. As such, the BYU wireless lab's test system does not have enough processors to implement real-time 8 x 8 differential decoding. The BYU wireless lab should concentrate on a complete 4 x 4 implementation with increased bandwidth to make full use of the available processing power. The 8 x 8 case should also be explored but without the expectation of real-time communication. However, with the test system, additional DSP processors can easily be added to allow for increased processing requirements.
12

Blind Unique Channel Identification of Alamouti Space-Time Coded Channel via a Signalling Scheme

Zhou, Lin 12 1900 (has links)
<p> In this thesis, we present a novel signalling scheme for blind channel identification of Alamouti space-time coded (STBC) channel and a space-time coded multiple-input single-output (MISO) system under flat fading environment. By using p-ary and q-ary PSK signals (where p and q are co-prime integers), we prove that a) under a noise-free environment, only two distinct pairs of symbols are needed to uniquely decode the signal and identify the channel, and b) under complex Gaussian noise, if the pth and qth order statistics of the received signals are available, the channel coefficients can also be uniquely determined. In both cases, simple closed-form solutions are derived by exploiting specific properties of the Alamouti STBC code and linear Diophantine equation theory.</p> <p> When only a limited number of received data are available, under Gaussian noise environment, we suggest the use of the semi-definite relaxation method and/or the sphere decoding method to implement blind ML detection so that the joint estimation of the channel and the transmitted symbols can be efficiently facilitated. Simulation results show that blind ML detection methods with our signalling scheme provide superior normalized mean square error in channel estimation compared to the method using only one constellation and that the average symbol error rate is close to that of the coherent detector (which necessitates perfect channel knowledge at the receiver), particularly when the SNR is high.</p> / Thesis / Master of Applied Science (MASc)
13

Software-Defined Radio Implementation of Two Physical Layer Security Techniques

Ryland, Kevin Sherwood 09 February 2018 (has links)
This thesis discusses the design of two Physical Layer Security (PLS) techniques on Software Defined Radios (SDRs). PLS is a classification of security methods that take advantage of physical properties in the waveform or channel to secure communication. These schemes can be used to directly obfuscate the signal from eavesdroppers, or even generate secret keys for traditional encryption methods. Over the past decade, advancements in Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS while the development of technologies such as the Internet of Things has provided new applications. As a result, this field has become heavily researched, but is still lacking implementations. The design work in this thesis attempts to alleviate this problem by establishing SDR designs geared towards Over-the-Air experimentation. The first design involves a 2x1 Multiple-Input Single-Output system where the transmitter uses Channel State Information from the intended receiver to inject Artificial Noise (AN) into the receiver's nullspace. The AN is consequently not seen by the intended receiver, however, it will interfere with eavesdroppers experiencing independent channel fading. The second design involves a single-carrier Alamouti coding system with pseudo-random phase shifts applied to each transmit antenna, referred to as Phase-Enciphered Alamouti Coding (PEAC). The intended receiver has knowledge of the pseudo-random sequence and can undo these phase shifts when performing the Alamouti equalization, while an eavesdropper without knowledge of the sequence will be unable to decode the signal. / Master of Science / This thesis discusses the design of two Physical Layer Security (PLS) techniques. PLS is a classification of wireless communication security methods that take advantage of physical properties in transmission or environment to secure communication. These schemes can be used to directly obfuscate the signal from eavesdroppers, or even generate secret keys for traditional encryption methods. Over the past decade, advancements in Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS while the development of technologies such as the Internet of Things has provided new applications. As a result, this field has become heavily researched, but is still lacking implementations. The design work in this thesis attempts to alleviate this problem by establishing systems that can be used for laboratory experimentation.
14

Δέκτες χωροχρονικής κωδικοποίησης για συχνοτικά επιλεκτικά συστήματα

Χριστοδούλου, Κωνσταντίνος 14 September 2010 (has links)
Η χωροχρονική μπλοκ κωδικοποίηση (STBC) αποτελεί μία αποδοτική και ευρέως διαδεδομένη τεχνική διαφορετικότητας μετάδοσης για την αντιμετώπιση του φαινομένου της εξασθένησης στις ασύρματες επικοινωνίες. Χαρακτηριστικό παράδειγμα είναι ο ορθογώνιος κώδικας του σχήματος Alamouti, ο οποίος με δύο κεραίες μετάδοσης επιτυγχάνει τη μέγιστη χωρική διαφορετικότητα στο μέγιστο δυνατό ρυθμό μετάδοσης, για οποιονδήποτε (πραγματικό ή μιγαδικό) αστερισμό συμβόλων. Ωστόσο, το σχήμα Alamouti έχει σχεδιαστεί για συχνοτικά επίπεδα κανάλια. Στην παρούσα εργασία μελετούμε την εφαρμογή STBC σε κανάλια συχνοτικά επιλεκτικής εξασθένησης. Εστιάζουμε κυρίως στο συνδυασμό του σχήματος Alamouti με τεχνικές εξάλειψης της διασυμβολικής παρεμβολής, εξετάζοντας τα σχήματα OFDM-STBC, FDE-STBC και TR-STBC, που έχουν προταθεί στη βιβλιογραφία. Επιπρόσθετα των συμβατικών δεκτών, για τα δύο τελευταία σχήματα περιγράφουμε και προσαρμοστικούς δέκτες, οι οποίοι παρακολουθούν τις μεταβολές του καναλιού, χωρίς να απαιτούν την ακριβή εκτίμησή του. Η έρευνα πάνω στα προηγούμενα σχήματα οδήγησε σε ορισμένα αξιόλογα αποτελέσματα. Κατ’ αρχήν, αποδεικνύουμε ότι τα σχήματα FDE-STBC και TR-STBC είναι ισοδύναμα, μολονότι καθένα εφαρμόζει διαφορετική κωδικοποίηση στα μεταδιδόμενα δεδομένα. Επίσης, σχεδιάζουμε έναν νέο δέκτη για το σχήμα TR-STBC, τον οποίο αναπτύσσουμε και σε προσαρμοστική μορφή. Βασικό πλεονέκτημα του προτεινόμενου δέκτη είναι ότι εκμεταλλεύεται τους κυκλικούς πίνακες συνέλιξης για τη μείωση της πολυπλοκότητας αποκωδικοποίησης. Τέλος, η απόδοση κάθε σχήματος και δέκτη αξιολογείται σε διάφορες συνθήκες εξασθένησης μέσω προσομοιώσεων σε υπολογιστικό περιβάλλον. / Space-time block coding (STBC) is an effective and widely used transmit diversity technique to combat multipath fading in wireless communication systems. A prominent example of STBC is the orthogonal code of Alamouti scheme, which achieves full spatial diversity at full transmission rate for two transmit antennas and any (real or complex) signal constellation. However, Alamouti scheme has been designed only for frequency-flat channels. In this thesis we study the application of STBC in frequency-selective channels. We mainly focus on combining Alamouti scheme with techniques for mitigating intersymbol interference, by studying several schemes (OFDM-STBC, FDE-STBC and TR-STBC) that have been proposed in literature. In addition to the conventional receivers, for FDE-STBC and TR-STBC we describe adaptive receivers too, which have the ability of tracking channel variations, without requiring explicit channel estimation. Research made upon the above schemes has come to some remarkable results. First, we prove that TR-STBC and FDE-STBC are equivalent, although each one encodes differently the transmitted data. Then, we design a new receiver for TR-STBC, which exploits the circulant convolution matrices, in order to reduce decoding complexity and we, also, develop an adaptive structure for the proposed receiver. At last, we evaluate the performance of all the described schemes and receivers in different fading conditions, by using computer simulations.
15

Transmitter and receiver design for inherent interference cancellation in MIMO filter-bank based multicarrier systems

Zakaria, Rostom 07 November 2012 (has links) (PDF)
Multicarrier (MC) Modulation attracts a lot of attention for high speed wireless transmissions because of its capability to cope with frequency selective fading channels turning the wideband transmission link into several narrowband subchannels whose equalization, in some situations, can be performed independently and in a simple manner. Nowadays, orthogonal frequency division multiplexing (OFDM) with the cyclic prefix (CP) insertion is the most widespread modulation among all MC modulations, and this thanks to its simplicity and its robustness against multipath fading using the cyclic prefix. Systems or standards such as ADSL or IEEE802.11a have already implemented the CP-OFDM modulation. Other standards like IEEE802.11n combine CP-OFDM and multiple-input multiple-output (MIMO) in order to increase the bit rate and to provide a better use of the channel spatial diversity. Nevertheless, CP-OFDM technique causes a loss of spectral efficiency due to the CP as it contains redundant information. Moreover, the rectangular prototype filter used in CP-OFDM has a poor frequency localization. This poor frequency localization makes it difficult for CP-OFDM systems to respect stringent specifications of spectrum masks.To overcome these drawbacks, filter-bank multicarrier (FBMC) was proposed as an alternative approach to CP-OFDM. Indeed, FBMC does not need any CP, and it furthermore offers the possibility to use different time-frequency well-localized prototype filters which allow much better control of the out-of-band emission. In the literature we find several FBMC systems based on different structures. In this thesis, we focus on the Saltzberg's scheme called OFDM/OQAM (or FBMC/OQAM). The orthogonality constraint for FBMC/OQAM is relaxed being limited only to the real field while for OFDM it has to be satisfied in the complex field. Consequently, one of the characteristics of FBMC/OQAM is that the demodulated transmitted symbols are accompanied by interference terms caused by the neighboring transmitted data in time-frequency domain. The presence of this interference is an issue for some MIMO schemes and until today their combination with FBMC remains an open problem.The aim of this thesis is to study the combination between FBMC and MIMO techniques, namely spatial multiplexing with ML detection. In the first part, we propose to analyze different intersymbol interference (ISI) cancellation techniques that we adapt to the FBMC/OQAM with MIMO context. We show that, in some cases, we can cope with the presence of the inherent FBMC interference and overcome the difficulties of performing ML detection in spatial multiplexing with FBMC/OQAM. After that, we propose a modification in the conventional FBMC/OQAM modulation by transmitting complex QAM symbols instead of OQAM ones. This proposal allows to reduce considerably the inherent interference but at the expense of the orthogonality condition. Indeed, in the proposed FBMC/QAM,the data symbol and the inherent interference term are both complex. Finally, we introduce a novel FBMC scheme and a transmission strategy in order to avoid the inherent interference terms. This proposed scheme (that we call FFT-FBMC) transforms the FBMC system into an equivalent system formulated as OFDM regardless of some residual interference. Thus, any OFDM transmission technique can be performed straightforwardly to the proposed FBMC scheme with a corresponding complexity growth. We develop the FFT-FBMC in the case of single-input single-output (SISO) configuration. Then, we extend its application to SM-MIMO configuration with ML detection and Alamouti coding scheme.
16

Proposition, modélisation et évaluation d'un réseau SFN-MISO pour l'optimisation de la diffusion TNT au standard DVB-T2 / Proposition, modeling and evaluation of a SFN-MISO network for the optimization of TNT broadcasting in DVB-T2

Tormos, Mokhtar 11 June 2012 (has links)
La deuxième génération de la norme de la Télévision Numérique Terrestre (DVB-T2), abréviation de «Digital Video Broadcasting-second generation», a été publiée par l'European Telecommunications Standards Institute (ETSI-EN 302 755) en avril 2009. Elle correspond à une extension de la norme DVB-T actuellement en cours dédiée à la diffusion de la Télévision Numérique Terrestre (TNT). La technologie DVB-T2 a vocation de satisfaire les besoins des diffuseurs terrestres qui désirent, soit de proposer des services numériques inédits lors de l'extinction de la TV analogique (plusieurs programmes TVHD multiplexés), soit d'améliorer la réception sur des téléviseurs portables à l'intérieur des bâtiments ou sur des récepteurs embarqués à bord de véhicules. La norme DVB-T2 est basée sur des principes permettant de mettre en oeuvre des réseaux SFN (Single Frequency Network). Plus précisément, des réseaux de diffusion composés de plusieurs émetteurs et diffusant sur une même fréquence un même signal avec des délais maitrisés. De plus, cette norme DVB-T2 intègre un mécanisme de codage Spatio-fréquentiel de type MISO (Multiple Input Single Output). Ce mode de codage doit améliorer les performances en termes de qualité de réception, du réseau de diffusion par rapport à des réseaux SFN à deux émetteurs, couramment utilisés dans la norme DVB-T. Cependant, à ce jour il y a peu d'évaluations réelles de l'apport d'une diffusion MISO à base de deux antennes et aucune évaluation d'une diffusion MISO dans un réseau SFN à trois ou plusieurs émetteurs. C'est dans ce contexte que se situent ces travaux de thèse. Plus particulièrement, il s'agit d'évaluer les performances des diffusions permettant dans la norme DVB-T2. Parmi les objectifs des travaux présentés dans ce manuscrit, il y a l'exploration et l'évaluation de l'apport d'une solution MISO Alamouti dans un réseau de diffusion combiné ou non à un réseau de type SFN. Nous proposons une nouvelle modélisation d'un réseau au standard DVB-T2 que l'on désigne comme un réseau SFN-MISO. Plusieurs études et résultats de simulation pour des réceptions fixes ou mobiles, ainsi que des analyses détaillées sur les performances d'une distribution MISO Alamouti dans un réseau à fréquence unique (SFN) pour un nombre variable de cas d'antennes, de codage et de modulation, sont donnés. Une exploration et évaluation d'une diversité MISO de type Tarokh est également étudiée et comparée à une approche MISO Alamouti. Le but est de déterminer et d?évaluer les réseaux de diffusion au standard DVB-T2 permettant de nouvelles méthodes de déploiement, de supervision et de diagnostics qui doivent conduire à une meilleure qualité de réception TNT tant fixe que mobile / The second generation of the Digital Terrestrial Television standard (DVB-T2) called "Digital Video Broadcasting-second generation", was published by ETSI (EN 302,755) in April 2009. This new standard is an extension of the DVB-T which is currently used for the broadcast of digital terrestrial television. The DVB-T2 is intended to meet the requirements of terrestrial broadcasters in order to either offer novel digital services after turning off the analogue TV (several HDTV programs by one multiplex) or improve the indoor portable reception of TVs and embedded receivers in vehicles. Digital Terrestrial Television (DTT) is based on SFN (Single Frequency Network) Networks. More precisely, broadcasting networks based on several transmitters which transmit on the same frequency the similar signal with controlled delays. In addition, the standard DVB-T2 proposes an encoding Space-frequency mechanism of type MISO (Multiple Input Single Output). This method of encoding provides improved performance over SFN based on two transmitters. However, there are few real evaluations of the benefit to use a MISO broadcast based on two antennas, and no evaluations of MISO in SFN network based on three and more transmitters. In this context, the works carred out in this thesis consists of evaluating the performances of the different types of broadcasting modes allowed in the standard DVB-T2. Among the objectives, the different types of networks presented in this manuscript, are to explore as far as possible the contribution of solution MISO Alamouti combined or not with SFN broadcast networks. To achieve that, we have proposed a new modeling of DVB-T2 broadcast networks. Several simulation results for fixed and mobile receptions, and detailed performance analysis of the Alamouti diversity in a Single Frequency Network (SFN) for different numbers of antennas, coding and modulation are obtained. Exploration of the MISO-Tarokh technique is also studied and compared with MISO-Alamouti in order to determine and evaluate networks allowing new methods of deployment, monitoring and diagnostic suitable for efficient fixed and mobile terrestrial broadcasting reception
17

Optimising cooperative spectrum sensing in cognitive radio networks using interference alignment and space-time coding

Yusuf, Idris A. January 2018 (has links)
In this thesis, the process of optimizing Cooperative Spectrum Sensing in Cognitive Radio has been investigated in fast-fading environments where simulation results have shown that its performance is limited by the Probability of Reporting Errors. By proposing a transmit diversity scheme using Differential space-time block codes (D-STBC) where channel state information (CSI) is not required and regarding multiple pairs of Cognitive Radios (CR's) with single antennas as a virtual MIMO antenna arrays in multiple clusters, Differential space-time coding is applied for the purpose of decision reporting over Rayleigh channels. Both Hard and Soft combination schemes were investigated at the fusion center to reveal performance advantages for Hard combination schemes due to their minimal bandwidth requirements and simplistic implementation. The simulations results show that this optimization process achieves full transmit diversity, albeit with slight performance degradation in terms of power with improvements in performance when compared to conventional Cooperative Spectrum Sensing over non-ideal reporting channels. Further research carried out in this thesis shows performance deficits of Cooperative Spectrum Sensing due to interference on sensing channels of Cognitive Radio. Interference Alignment (IA) being a revolutionary wireless transmission strategy that reduces the impact of interference seems well suited as a strategy that can be used to optimize the performance of Cooperative Spectrum Sensing. The idea of IA is to coordinate multiple transmitters so that their mutual interference aligns at their receivers, facilitating simple interference cancellation techniques. Since its inception, research efforts have primarily been focused on verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity), developing algorithms for determining alignment solutions and designing transmission strategies that relax the need for perfect alignment but yield better performance. With the increased deployment of wireless services, CR's ability to opportunistically sense and access the unused licensed frequency spectrum, without causing harmful interference to the licensed users becomes increasingly diminished, making the concept of introducing IA in CR a very attractive proposition. For a multiuser multiple-input-multiple-output (MIMO) overlay CR network, a space-time opportunistic IA (ST-OIA) technique has been proposed that allows spectrum sharing between a single primary user (PU) and multiple secondary users (SU) while ensuring zero interference to the PUs. With local CSI available at both the transmitters and receivers of SUs, the PU employs a space-time WF (STWF) algorithm to optimize its transmission and in the process, frees up unused eigenmodes that can be exploited by the SU. STWF achieves higher performance than other WF algorithms at low to moderate signal-to-noise ratio (SNR) regimes, which makes it ideal for implementation in CR networks. The SUs align their transmitted signals in such a way their interference impairs only the PU's unused eigenmodes. For the multiple SUs to further exploit the benefits of Cooperative Spectrum Sensing, it was shown in this thesis that IA would only work when a set of conditions were met. The first condition ensures that the SUs satisfy a zero interference constraint at the PU's receiver by designing their post-processing matrices such that they are orthogonal to the received signal from the PU link. The second condition ensures a zero interference constraint at both the PU and SUs receivers i.e. the constraint ensures that no interference from the SU transmitters is present at the output of the post-processing matrices of its unintended receivers. The third condition caters for the multiple SUs scenario to ensure interference from multiple SUs are aligned along unused eigenmodes. The SU system is assumed to employ a time division multiple access (TDMA) system such that the Principle of Reciprocity is employed towards optimizing the SUs transmission rates. Since aligning multiple SU transmissions at the PU is always limited by availability of spatial dimensions as well as typical user loads, the third condition proposes a user selection algorithm by the fusion centre (FC), where the SUs are grouped into clusters based on their numbers (i.e. two SUs per cluster) and their proximity to the FC, so that they can be aligned at each PU-Rx. This converts the cognitive IA problem into an unconstrained standard IA problem for a general cognitive system. Given the fact that the optimal power allocation algorithms used to optimize the SUs transmission rates turns out to be an optimal beamformer with multiple eigenbeams, this work initially proposes combining the diversity gain property of STBC, the zero-forcing function of IA and beamforming to optimize the SUs transmission rates. However, this solution requires availability of CSI, and to eliminate the need for this, this work then combines the D-STBC scheme with optimal IA precoders (consisting of beamforming and zero-forcing) to maximize the SUs data rates.
18

Space Time Coding For Wireless Communication

Acharya, Om Nath, Upadhyaya, Sabin January 2012 (has links)
As the demand of high data rate is increasing, a lot of research is being conducted in the field of wireless communication. A well-known channel coding technique called Space-Time Coding has been implemented in the wireless Communication systems using multiple antennas to ensure the high speed communication as well as reliability by exploiting limited spectrum and maintaining the power. In this thesis, Space-Time Coding is discussed along with other related topics with special focus on Alamouti Space-Time Block Code. The Alamouti Codes show good performance in terms of bit error rate over Rayleigh fading channel. The performance of Altamonte’s code and MIMO capacity is evaluated by using MATLAB simulation.
19

Estudo sobre os métodos de diversidade para sistemas de TV digital

Rabaça, Ricardo Seriacopi 08 August 2017 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-06T23:04:35Z No. of bitstreams: 2 RICARDO SERIACOPI RABAÇA.pdf: 12578451 bytes, checksum: 9aa6f50946d5c917a7ea4e5b6841ef6f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-04-03T12:57:50Z (GMT) No. of bitstreams: 2 RICARDO SERIACOPI RABAÇA.pdf: 12578451 bytes, checksum: 9aa6f50946d5c917a7ea4e5b6841ef6f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-03T12:57:50Z (GMT). No. of bitstreams: 2 RICARDO SERIACOPI RABAÇA.pdf: 12578451 bytes, checksum: 9aa6f50946d5c917a7ea4e5b6841ef6f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-08-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fundo Mackenzie de Pesquisa / This project presents the history, basic information and advantages of using Software De ned Radio (SDR), diversity, layer division multiplexing (LDM) technique and the latest digital TV standards in a digital communication system. These subjects have been relevant in the scienti c community, making the project attractive in terms of the possibility of discoveries and optimizations. After that, the implementation of a digital communication system using these technologies is proposed. This implementation was performed by means of GRC simulation software and the use of C++ and Python programming languages. Therefore, it was necessary to test the steps of coding, modulation and digital transmission / reception. Finally, tests were performed with systems that use diversity, for example, Single-Input Single-Output (SISO), as well as setting Single-Input Multiple-Output (SIMO), using the settings 1x 2, 1x3 and 1x4, in order to compare possible advantages in spectrum utilization, data rate and system robustness to interference. / O presente projeto apresenta o histórico, as informações básicas e as vantagens da utilização do rádio definido por software, do inglês Software Defined Radio (SDR), da diversidade, da técnica de multiplexacão por divisão em camadas, do inglês Layered Division Multiplexing (LDM) e dos mais modernos padrões de TV digital em um sistema de comunicação digital. Estes temas vêm repercutindo de forma relevante na comunidade científica, tornando o projeto atrativo em termos de possibilidade de descobertas e otimização. Posteriormente, a implementação de um sistema de comunicação digital unindo estas tecnologias _e proposta. Esta implementação foi realizada por meio do software de simulação GNU Radio Companion (GRC) e do uso das linguagens de programação C++ e Python. Para tanto, foi necessário testar as etapas de codificação, modulação e a transmissão/recepção digital. Finalmente, foram realizados testes com sistemas que utilizam diversidade, como, por exemplo, os métodos com uma entrada e uma saída, do inglês Single-Input Single-Output (SISO), além do método com uma entrada e múltiplas saídas, do inglês Single-Input Multiple-Output (SIMO), com as configurações 1x2, 1x3 e 1x4, com o intuito de comparar possíveis vantagens no aproveitamento do espectro, na taxa de dados e na robustez do sistema à interferências.
20

Full Diversity Noncoherent Space-Time Block Codes Designs via Unique Factorizations of Signals

Xia, Dong 10 1900 (has links)
<p>In this thesis, a MISO wireless communication system having even transmitter antennas and a single receiver antenna is considered, where neither the transmitter nor the receiver knows channel state information. Particularly when the number of transmitter antennas is two, a novel concept called a uniquely factorable constellation pair (UFCP) is first proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood (ML) receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this thesis to maximizing the coding gain is to carefully design an energy scale to compress the first three largest energy points in the corner of the QAM constellations in the denominator of the objective as well as carefully design a constellation triple forming two UFCPs, with one collaborating with the other two so as to make the accumulated minimum Euclidean distance along the two transmitter antennas in the numerator of the objective as large as possible and at the same time, to avoid as many corner points of the QAM constellations with the largest energy as possible to achieve the minimum of the numerator. In other words, the optimal coding gain is attained by intelligent constellations collaboration and efficient energy compression. Another contribution of this thesis is to generalize the design for the two transmitter antennas into that of the noncoherent system with any even number of transmitter antennas. Using the Alamouti coding scheme and the Toeplitz matrix structure, a novel noncoherent nonunitary space-time block code, which is called an Alamoutibased Toeplitz space-time block code, is proposed. By the fundamentals of Galois theory and algebraic number theory, two important properties on the two Alamouti codes generated from a pair of coprime phase shift keying (PSK) constellations, i.e., the uniqueness of factorization itself and the shift-invariant uniqueness of factorization, are first revealed and rigorously proved. Then, it is further shown that it is these two kinds of the unique factorizations that enable the unique blind identification of both the channel coefficients and the transmitted signals by only processing two block received signals as well as noncoherent full diversity with a generalized likelihood ratio test (GLRT) receiver. In addition, a full diversity unitary code design is also proposed by simply applying the QR decomposition to the full diversity nonunitary Alamoutibased Toeplitz space-time block code. Computer simulations demonstrate that error performance of both optimal unitary UFCP code and Alamouti-based Toeplitz code presented in this thesis outperform those of the differential code and the SNR-efficient training code, which is the best code in current literatures for the system.</p> / Master of Applied Science (MASc)

Page generated in 0.0305 seconds