• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un théorème de Kohno-Drinfeld pour les connexions de Knizhnik-Zamolodchikov cyclotomiques

Brochier, Adrien 10 June 2011 (has links) (PDF)
Dans cette thèse, on donne une construction explicite des représentations de monodromie provenant d'analogues "cyclotomiques" de la connexion de Knizhnik--Zamolodchikov. Ce sont des représentations de $B_n^1$, le groupe de tresse de type de Coxeter B. On commence par construire, en utilisant des twists dynamiques, des représentations algébriques de $B_n^1$ qui étendent naturellement les représentations du groupe de tresse $B_n$ obtenues grâce aux groupes quantiques et aux $R$-matrices. On montre ensuite par des arguments de rigidité que ces représentations algébriques s'identifient aux représentations de monodromie des connexions KZ cyclotomiques.
2

Exposants géométriques des modèles de boucles dilués et idempotents des TL-modules de la chaîne de spins XXZ

Provencher, Guillaume 12 1900 (has links)
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent. / This thesis is concerned with the study of critical phenomena for two-dimensional models on the lattice. Its results are contained in two articles: A first one, devoted to measuring geometric exponents, and a second one to the construction of idempotents for the XXZ spin chain projecting on indecomposable modules of the Temperley-Lieb algebra. Monte Carlo experiments, for a family of loop models in their dilute phase, are presented in the first article. Coined "dilute loop models (DLM)", this family is based upon an O(n) model introduced by Nienhuis (1990). It is defined by two coprime integers p,p' and an anisotropy parameter. In the continuum limit, DLM(p,p') is expected to yield a logarithmic conformal field theory of central charge c(\kappa)=13-6(\kappa+1/\kappa), where the ratio \kappa=p/p' is related to the loop gas fugacity \beta=-2\cos\pi/\kappa. Critical exponents pertaining to valuable geometrical objects, namely the hull, external perimeter and red bonds, were measured. The Metropolis-Hastings algorithm, as well as several methods improving its efficiency, are presented. Despite the extrapolation of curves presenting large slopes, values as close as three to four digits from the theoretical predictions were attained through rigorous statistical analysis. The second article describes the decomposition of the XXZ spin chain Hilbert space \otimes^nC^2 using idempotents. The model of interest (Pasquier & Saleur (1990)) is described by a parameter-dependent Hamiltonian H_{XXZ}(q), q\in C^\times, expressible as a sum of elements of the Temperley-Lieb algebra TL_n(q). The spectrum of H_{XXZ}(q) in the continuum limit is also believed to be related to conformal field theories whose central charge is set by q. Using the quantum Schur-Weyl duality, an expression for the primitive idempotents of End_{TL_n}\otimes^nC^2, involving U_qsl_2 elements, is obtained. These idempotents allow for the explicit construction of the indecomposable TL_n-modules of \otimes^nC^2, all of which are irreducible except when q is a root of unity. This case, and the case where q is generic, are treated separately. Since a wide variety of results and tools are required to tackle the problems stated above, this thesis contains many introductory chapters. Its layout is as follows. The first chapter introduces theoretical concepts common to both articles, in particular an overview of critical phenomena and conformal field theory. Before proceeding to the article entitled \emph{Geometric Exponents of Dilute Loop Models} constituting Chapter 3, the second chapter deals briefly with logarithmic conformal fields, Schramm-Loewner evolution and the Metropolis-Hastings algorithm. The fourth chapter defines some algebraic concepts used in the second article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2" of Chapter 5. A summary of the main results, as well as paths to unexplored questions, are suggested in a final chapter.
3

Exposants géométriques des modèles de boucles dilués et idempotents des TL-modules de la chaîne de spins XXZ

Provencher, Guillaume 12 1900 (has links)
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent. / This thesis is concerned with the study of critical phenomena for two-dimensional models on the lattice. Its results are contained in two articles: A first one, devoted to measuring geometric exponents, and a second one to the construction of idempotents for the XXZ spin chain projecting on indecomposable modules of the Temperley-Lieb algebra. Monte Carlo experiments, for a family of loop models in their dilute phase, are presented in the first article. Coined "dilute loop models (DLM)", this family is based upon an O(n) model introduced by Nienhuis (1990). It is defined by two coprime integers p,p' and an anisotropy parameter. In the continuum limit, DLM(p,p') is expected to yield a logarithmic conformal field theory of central charge c(\kappa)=13-6(\kappa+1/\kappa), where the ratio \kappa=p/p' is related to the loop gas fugacity \beta=-2\cos\pi/\kappa. Critical exponents pertaining to valuable geometrical objects, namely the hull, external perimeter and red bonds, were measured. The Metropolis-Hastings algorithm, as well as several methods improving its efficiency, are presented. Despite the extrapolation of curves presenting large slopes, values as close as three to four digits from the theoretical predictions were attained through rigorous statistical analysis. The second article describes the decomposition of the XXZ spin chain Hilbert space \otimes^nC^2 using idempotents. The model of interest (Pasquier & Saleur (1990)) is described by a parameter-dependent Hamiltonian H_{XXZ}(q), q\in C^\times, expressible as a sum of elements of the Temperley-Lieb algebra TL_n(q). The spectrum of H_{XXZ}(q) in the continuum limit is also believed to be related to conformal field theories whose central charge is set by q. Using the quantum Schur-Weyl duality, an expression for the primitive idempotents of End_{TL_n}\otimes^nC^2, involving U_qsl_2 elements, is obtained. These idempotents allow for the explicit construction of the indecomposable TL_n-modules of \otimes^nC^2, all of which are irreducible except when q is a root of unity. This case, and the case where q is generic, are treated separately. Since a wide variety of results and tools are required to tackle the problems stated above, this thesis contains many introductory chapters. Its layout is as follows. The first chapter introduces theoretical concepts common to both articles, in particular an overview of critical phenomena and conformal field theory. Before proceeding to the article entitled \emph{Geometric Exponents of Dilute Loop Models} constituting Chapter 3, the second chapter deals briefly with logarithmic conformal fields, Schramm-Loewner evolution and the Metropolis-Hastings algorithm. The fourth chapter defines some algebraic concepts used in the second article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2" of Chapter 5. A summary of the main results, as well as paths to unexplored questions, are suggested in a final chapter.
4

Algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Askey-Wilson, et autres centralisateurs de U_q(sl_2)

Zaimi, Meri 08 1900 (has links)
Mémoire par articles. / Ce mémoire contient trois articles reliés par l'idée sous-jacente d'une généralisation de la dualité de Schur-Weyl. L'objectif principal est d'obtenir une description algébrique du centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles, lorsque q n'est pas une racine de l'unité. La relation entre une algèbre de Askey-Wilson étendue AW(3) et ce centralisateur est examinée à cet effet. Dans le premier article, les éléments du centralisateur de l'action de U_q(sl_2) dans son produit tensoriel triple sont définis à l'aide de la matrice R universelle de U_q(sl_2). Il est montré que ces éléments respectent les relations définissantes de AW(3). Dans le deuxième article, la matrice R universelle de la superalgèbre de Lie osp(1|2) est utilisée de manière similaire avec l'algèbre de Bannai-Ito BI(3). Dans ce cas, le formalisme de la matrice R permet de définir l'algèbre de Bannai-Ito de rang supérieur BI(n) comme le centralisateur de l'action de osp(1|2) dans son produit tensoriel n-fois. Le troisième article propose une conjecture qui établit un isomorphisme entre un quotient de AW(3) et le centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles quelconques. La conjecture est prouvée pour plusieurs cas, et les algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Temperley-Lieb à une frontière sont retrouvées comme quotients de l'algèbre de Askey-Wilson. / This master thesis contains three articles related by the underlying idea of a generalization of the Schur-Weyl duality. The main objective is to obtain an algebraic description of the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of three irreducible representations, when q is not a root of unity. The connection between a centrally extended Askey-Wilson algebra AW(3) and this centralizer is examined for this purpose. In the first article, the elements of the centralizer of the action of U_q(sl_2) in its threefold tensor product are defined with the help of the universal R-matrix of U_q(sl_2). These elements are shown to satisfy the defining relations of AW(3). In the second article, the universal R-matrix of the Lie superalgebra osp(1|2) is used in a similar fashion with the Bannai-Ito algebra BI(3). In this case, the formalism of the R-matrix allows to define the higher rank Bannai-Ito algebra BI(n) as the centralizer of the action of osp(1|2) in its n-fold tensor product. The third article proposes a conjecture that establishes an isomorphism between a quotient of AW(3) and the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of any three irreducible representations. The conjecture is proved for several cases, and the Temperley-Lieb, Birman-Murakami-Wenzl and one-boundary Temperley-Lieb algebras are recovered as quotients of the Askey-Wilson algebra.

Page generated in 0.0641 seconds