• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 13
  • 12
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isomerisation of palladium π-allyl complexes

Dooley, Ruth Elizabeth January 2016 (has links)
The palladium-catalysed asymmetric allylic alkylation is a mild and versatile bond forming reaction between a nucleophile and allylic electrophile. The wide scope of nucleophiles used, and the high regio- and stereoselectivity obtainable renders this transformation an important technique in enantioselective synthesis. The mechanism is known to go via a key palladium π-allyl intermediate, followed by nucleophilic addition occurring at the terminal allylic carbon. Both the formation of the palladium π-allyl, and the nucleophilic addition to generate the alkylated product and palladium(0) proceed with high levels of inversion of stereochemistry, and both provide an opportunity for the induction of stereochemistry. However in the case of ligand controlled nucleophilic addition memory effects have been observed. The epimerisation of the palladium π-allyl before nucleophilic attack is key to achieving high levels of selectivity when racemic starting materials and chiral ligands are employed. Previous work in the Lloyd-Jones group has determined that prolonging the lifetime of the palladium π-allyl species, either by the use of weakly coordinating counter ions or slow addition of the nucleophile reduces this memory effect, however increasing the rate of epimerisation would have a result in a similar effect. One of the mechanisms resulting in the epimerisation of the palladium π-allyl species is mediated by palladium(0), however the details of the mechanism are not well understood. We describe the synthesis of a diastereotopic palladium cyclohexenyl ester and labelled the complex with 108palladium and d3 at the cyclohexenyl ester. Using simultaneous 31P NMR and mass spectrometry, we have acquired strong evidence against mechanisms involving a single electron transfer, as proposed by Stille, of formation of a dinuclear palladium(I) species followed by an inversion event, and we have gained evidence supporting the direct nucleophilic addition of the palladium(0), resulting in inversion of stereochemistry. The differences in rates of nucleophilic attack involving monodentate and bidentate phosphine ligands on both the palladium I-cyclohexenyl ester have also been explored. Throughout the mechanistic investigation, it was noted that the 31P NMR spectroscopy experiment used gave non-quantitative results, and in fact the differences in quantification of the species varied with the spectrometer used. We also describe our investigations into where these differences arise from and an optimum set of parameters for quantitative 31P NMR spectroscopy. The conclusions are also applicable to other heternuclear NMR spectroscopic experiments.
2

Site- and Enantioselective C-C and C-B Bond Forming Reactions Catalyzed by Cu-, Mg-, Zn-, or Al-based N-Heterocyclic Carbene Complexes

Lee, Yunmi January 2010 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. In this chapter, the ability of chiral bidentate N-heterocyclic carbenes (NHCs) to activate alkylmetal reagents directly in order to promote C&#8210;C bond forming reactions in the absence of a Cu salt is presented. Highly regio- and enantioselective Cu-free allylic alkylation reactions of di- and trisubstituted allylic substrates with organomagnesium, organozinc, and organoaluminum reagents are demonstrated. Chiral bidentate sulfonate-bearing NHC-Zn and NHC-Al complexes are isolated and fully characterized. Based on crystal structures of these catalytic complexes, mechanistic details regarding Cu-free allylic alkylations with alkylmetal reagents are proposed. Chapter 2. New methods for efficient and highly enantioselective Cu-catalyzed allylic alkylation reactions of a variety of trisubstituted allylic substrates with alkylmagnesium and alkyl-, aryl-, 2-furyl-, and 2-thiophenylaluminum reagents are presented. Transformations are promoted by a chiral NHC complex in the presence of commercially available, inexpensive and air stable CuCl2*H2O. Enantiomerically enriched compounds containing difficult-to-access all-carbon quaternary stereogenic centers are obtained. Chapter 3. New methods for highly site- and enantioselective Cu-catalyzed allylic alkylation reactions of allylic phosphates with vinylaluminum reagents are presented. The requisite vinylaluminums are prepared by reaction of readily accessible terminal alkynes with DIBAL-H and used directly without further purification. Vinyl additions are promoted in the presence of a chiral bidentate sulfonate-based NHC complex and a Cu salt. The desired SN2' products are obtained in >98% E selectivities, >98% SN2' selectivities, >98% group selectivities (<2% i-Bu addition) and high enantioselectivities. The enantioselective total synthesis of the natural product bakuchiol highlights the versatility of the one-pot hydroalumination/Cu-catalyzed enantioselective allylic vinylation process. Chapter 4. Efficient and highly site-selective Cu-catalyzed hydroboration reactions of 1,2-disubstituted aryl olefins with bis(pinacolato)diboron (B2(pin)2) are presented. Transformations are promoted by an NHC-Cu complex in the presence of MeOH, affording only secondary &#946;-boronate isomers. A Cu-catalyzed method for the synthesis of enantiomerically enriched secondary alkylboronates promoted by chiral NHC complexes is disclosed. Chapter 5. A new method for efficient and site-selective tandem Cu-catalyzed copper-boron additions to terminal alkynes with B2(pin)2 in the presence of an NHC-Cu complex is demonstrated. In a one-pot process, Cu-catalyzed hydroboration of alkynes provides vinylboronates in situ, which undergo a second site-selective hydroboration to afford vicinal diboronates. Highly Enantiomerically enriched diboronates obtained through Cu-catalyzed enantioselective dihydroboration in the presence of chiral bidentate sulfonate-based NHC-Cu complex are obtained. The control of site selectivity in the first-stage hydroboration of alkynes is critical for efficient and highly enantioselective reactions in the tandem dihydroboration. Functionalizations of the vicinal diboronates described herein underline the significance of the current method. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Bispyridylamides as ligands in asymmetric catalysis

Belda de Lama, Oscar January 2004 (has links)
This thesis deals with the preparation and use of chiralbispyridylamides as ligands in metal-catalyzed asymmetricreactions. The compounds were prepared by amide formation usingdifferent coupling reagents. Bispyridylamides havingsubstituents in the 4- or 6- positions of the pyridine ringswere prepared by functional group interconversion of the 4- or6- halopyridine derivatives. These synthetic approaches provedto be useful for various types of chiral backbones. Pseudo C2-symmetric bispyridylamides were also synthesizedby means of stepwise amide formation. The compounds were used as ligands in themicrowave-accelerated Mocatalyzed asymmetric allylic alkylationreaction. Ligands having ð-donating substituents in the4-positions of the pyridine rings gave rise to products withhigher branched to linear ratio. The catalytic reaction, whichproved to be rather general for allylic carbonates with anaromatic substituent, was used as the key step in thepreparation of (R)-baclofen. The Mo-bispyridylamide catalystprecursor was studied by NMR spectroscopy. Bispyridylamide complexes of metal alkoxides were alsoevaluated in the asymmetric addition of cyanide to aldehydesand the metal complexes involved were studied by NMRspectroscopy and X-ray crystallography. Chiral diamines wereused as additives to study the ring opening of cyclohexeneoxide with azide, catalyzed by Zr(IV)-bispyridylamidecomplexes. Various bispyridylamides were attached to solid supports oforganic or inorganic nature. The solid-supported ligands wereused in Mo-catalyzed asymmetric allylic alkylation reactionsand in the asymmetric addition of cyanide to benzaldehyde. Keywords:asymmetric catalysis, chiral ligand, pyridine,amide, allylic alkylation, enantioselective, cyanation,ring-opening, chiral Lewis acid.
4

Bispyridylamides as ligands in asymmetric catalysis

Belda de Lama, Oscar January 2004 (has links)
<p>This thesis deals with the preparation and use of chiralbispyridylamides as ligands in metal-catalyzed asymmetricreactions.</p><p>The compounds were prepared by amide formation usingdifferent coupling reagents. Bispyridylamides havingsubstituents in the 4- or 6- positions of the pyridine ringswere prepared by functional group interconversion of the 4- or6- halopyridine derivatives. These synthetic approaches provedto be useful for various types of chiral backbones. Pseudo C<sub>2</sub>-symmetric bispyridylamides were also synthesizedby means of stepwise amide formation.</p><p>The compounds were used as ligands in themicrowave-accelerated Mocatalyzed asymmetric allylic alkylationreaction. Ligands having ð-donating substituents in the4-positions of the pyridine rings gave rise to products withhigher branched to linear ratio. The catalytic reaction, whichproved to be rather general for allylic carbonates with anaromatic substituent, was used as the key step in thepreparation of (R)-baclofen. The Mo-bispyridylamide catalystprecursor was studied by NMR spectroscopy.</p><p>Bispyridylamide complexes of metal alkoxides were alsoevaluated in the asymmetric addition of cyanide to aldehydesand the metal complexes involved were studied by NMRspectroscopy and X-ray crystallography. Chiral diamines wereused as additives to study the ring opening of cyclohexeneoxide with azide, catalyzed by Zr(IV)-bispyridylamidecomplexes.</p><p>Various bispyridylamides were attached to solid supports oforganic or inorganic nature. The solid-supported ligands wereused in Mo-catalyzed asymmetric allylic alkylation reactionsand in the asymmetric addition of cyanide to benzaldehyde.</p><p><b>Keywords:</b>asymmetric catalysis, chiral ligand, pyridine,amide, allylic alkylation, enantioselective, cyanation,ring-opening, chiral Lewis acid.</p>
5

1,3- DIPHOSPHITE LIGANDS WITH FURANOSIDE BACKBONE: A POWERFUL TOOL IN ASYMMETRIC CATALYSIS

Gual Gozalbo, Aitor 09 June 2009 (has links)
La catàlisi asimètrica es part de la síntesi asimètrica i fa possible la transformació de substrats pro-quirals o racèmics en productes quirals emprant quantitats catalítiques de compostos que contenen informació quiral. El disseny de nous lligands es l'etapa clau per a obtenir alts nivells de reactivitat i selectivitat. Els carbohidrats son uns dels membres més importants dintre de la "chiral pool".Aquesta tesi esta enfocada en el desenvolupament i aplicació en catàlisi asimètrica de nous lligands amb esquelet carbohidrat.Aquestos lligands foren aplicats amb èxit a la hidroformilació asimètrica catalitzada per Rh d'alquens monosubstituïts, interns disubstituïts i 1,1´-disubstituïts.L'efecte de les modificacions estructurals dels lligands 1,3-difosfit sobre els resultats catalítics a l'alquilació al·lílica catalitzada per Pd de compostos fenil-al·lílics ha sigut també estudiat en aquesta tesis. Finalment, els lligands 1,3-difosfit han sigut aplicats a l'estabilització de nanopartícules metàl·liques, i la seva aplicació a la hidrogenació de o- i m-metilanisol. / Asymmetric catalysis is part of the asymmetric synthesis and makes possible the transformation of a pro-chiral or racemic substrate into a chiral product using catalytic amounts of the compounds which contain the chiral information. The design of new ligands is perhaps the most crucial step to achieve the highest levels of reactivity and selectivity. Carbohydrates are the most prominent members of the "chiral pool".This thesis focus on the development and application in asymmetric catalysis of new 1,3-diphosphite with carbohydrate backbone. These ligands were successful applied in the Rh-asymmetric hydroformylation of monosubstituted, disubstituted internal and 1,1´-disubstituted alkenes.The effect of the structural modification of these 1,3-diphosphite ligands on the catalytic results of the Pd-allylic alkylation of phenyl-allyl compounds was also studied in this thesis. Finally, the 1,3-diphosphites ligands were applied to stabilize metal nanoparticles. These nanocatalysts were tested in the hydrogenation of pro-chiral o- and m-methylanisole.
6

Palladium-catalyzed asymmetric allylic alkylations : control of all-carbon quaternary centers / Alkylations allyliques asymétriques catalysées au palladium : contrôle des centres quaternaires tout-carbone

Oliveira, Marllon Nascimento de 30 November 2017 (has links)
Dans le cadre de nos travaux, nous avons développé une méthode extrêmement douce et particulièrement efficace d’accès à des γ-butyrolactones possédant un centre stéréogène quaternaire en α à partir d’énols carbonates d’allyle cycliques et exocycliques en utilisant la réaction d’alkylation allylique asymétrique décarboxylante pallado-catalysée (Pd-DAAA). Remarquablement, cette méthode a permis d’étendre l’utilisation de l’allylation asymétrique décarboxylante à des substrats sans précèdent dans la littérature, tels que les énols carbonates allyliques exocycliques. Cette réaction a été utilisée comme étape clé dans la synthèse des spirolactones chirales qui ont été obtenues avec de bons rendements et d’excellentes énantiosélectivités. Une nouvelle méthode catalytique robuste et hautement énantiosélective permettant d’accéder à des isoxazolidinones possédant un centre stéréogène quaternaire en α a été développée. Ce protocole repose sur une alkylation allylique asymétrique catalysée par des complexes de palladium chiraux (Pd-AAA) et amène aux produits désirés avec de bons rendements et d’excellents excès énantiomériques. Par ailleurs, nous avons également mis au point des conditions permettant de convertir ces isoxazolidinones α,α-disubstituées en acides β2,2 aminés et en β-lactames. / The development of a palladium-catalyzed decarboxylative allylic alkylation protocol (Pd DAAA) applied to cyclic and exocyclic allyl enol carbonates has allowed a highly enantioselective access to a range of γ butyrolactones bearing an all-carbon α quaternary stereogenic center. Remarkably, this approach allowed the extension of this reaction to substrates with no precedent in the literature, such as the exocyclic allyl enol carbonates. The Pd-DAAA process was eventually used for the synthesis of chiral spirolactones, which were readily obtained in high yields and in high optical purity. The synthesis of different isoxazolidin-5-ones bearing highly stereodefined all carbon α quaternary center was accomplished by palladium-catalyzed asymmetric allylic alkylation (Pd-AAA) of 4 substituted isoxazolidin-5-ones with an array of 2 substituted allyl acetates. The reaction proceeded in both excellent enantioselectivity and yield with isoxazolidin-5-ones containing an α-aryl substituents or an α heteroaryl moieties. This robust and highly enantioselective method allowed the access to valuable β2,2-amino acids and β lactams.
7

Part I Asymmetric Allylic Alkylation Catalyzed by Pd-Dendron Complexes Part II Self-assembly of n-/p- type Heterojunction Nanomaterials

Tu, Siyu 27 July 2011 (has links)
No description available.
8

D-glucosamine as "green" substrate in synthesis of ligands for asymetric catalysis

Wojcik, Karolina 22 October 2012 (has links) (PDF)
Several ligands derived from D-glucosamine, designed for different catalytic reactions havebeen synthesized. The ligands for homogeneous catalysis based on 1,2-glucodiamine wereprepared, and used in reactions of allylic alkylation, hydrogenation and Michael addition.Supported Aqueous Phase Catalyst (SAPC) system was prepared from D-glucosamine anduse with very good results in Suzuki Miyaura cross coupling reactions. Catalyst was alsorecycled. Attempt to prepare ligands grafted on SBA-silica matrix were made as well asligands containing poly(ethylene) glycol moiety.
9

Chiral Pyridine-Containing Ligands for Asymmetric Catalysis. Synthesis and Applications

Rahm, Fredrik January 2003 (has links)
This thesis deals with the design and syntheses of chiral,enantiopure pyridinecontaining ligands and their applicationsin asymmetric catalyis. Chiral pyridyl pyrrolidine ligands and pyridyl oxazolineligands were synthesized and employed in thepalladium-catalysed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Theinfluence of the steric properties of the ligands wereinvestigated. Ditopic ligands, containing crown ether units as structuralelements, were synthesized and some of the ligands were used asligands in the palladiumcatalysed allylic alkylation of1,3-diphenyl-2-propenyl acetate with dimethyl malonate. A smallrate enhancement was observed, compared with analogous ligandslacking the crown ether unit, when these ditopic ligands wereused in dilute systems. A modular approach was used to synthesize chiralenantiomerically pure pyridyl alcohols and C2-symmetric2,2’-bipyridines, with the chirality originating from thechiral pool. Electronic and steric properties of the compoundswere varied and they were used as ligands in theenantioselective addition of diethylzinc to benzaldehyde. Thesense of asymmetric induction was found to be determined by theabsolute configuration of the carbinol carbon atom. Theelectronic properties of the ligands had a minor influence onthe levels of enantioselectivity induced by the ligands. Chiral pyridyl phosphinite ligands and pyridyl phosphiteligands were synthesized from the pyridyl alcohols andevaluated as ligands in palladiumcatalysed allylic alkylations.With the phosphinite ligands, the sense of chiral induction wasfound to be determined by the absolute configuration of theformer carbinol carbon atom. A kinetic resolution of theracemic starting material was observed with one of thephosphite ligands. Moderate enantioselectivities wereachieved. <b>Kewords:</b>asymmetric catalysis, chiral ligand, chiralpool, oxazoline, crownether, ditopic receptor, bipyridine,pyridyl alcohol, modular approach, P,Nligand, diethylzinc,allylic alkylation.
10

Impact of Secondary Interactions in Asymmetric Catalysis

Frölander, Anders January 2007 (has links)
This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained employing hydroxy- and methoxy-containing ligands in the catalytic reaction. This type of hydrogen bond was further studied in phenanthroline metal complexes. As expected for a hydrogen bond, the strength of the bond was found to increase with increased electron density at the metal and with increased acidity of the hydroxy protons. The second part deals with the use of hydroxy- and methoxy-containing phosphinooxazoline ligands in the rhodium- and iridium-catalyzed asymmetric hydrosilylation reaction. The enantioselectivities obtained were profoundly enhanced upon the addition of silver salts. This phenomenon was explained by an oxygen–metal coordination in the catalytic complexes, which was confirmed by NMR studies of an iridium complex. Interestingly, the rhodium and iridium catalysts nearly serve as pseudo-enantiomers giving products with different absolute configurations. The final part deals with ditopic pyridinobisoxazoline ligands and the application of their metal complexes in asymmetric cyanation reactions. Upon complexation, these ligands provide catalysts with both Lewis acidic and Lewis basic sites, capable of activating both the substrate and the cyanation reagent. Lanthanide and aluminum complexes of these ligands were found to catalyze the addition of the fairly unreactive cyanation reagents ethyl cyanoformate and acetyl cyanide to benzaldehyde, whereas complexes of ligands lacking the Lewis basic coordination sites failed to do so. / QC 20100709

Page generated in 0.1237 seconds