• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 32
  • 21
  • 11
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 169
  • 24
  • 24
  • 23
  • 23
  • 23
  • 22
  • 21
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

On evolution equations in Banach spaces and commuting semigroups /

Alsulami, Saud M. A. January 2005 (has links)
Thesis (Ph.D.)--Ohio University, June, 2005. / Includes bibliographical references (p. 96-102)
42

On evolution equations in Banach spaces and commuting semigroups

Alsulami, Saud M. A. January 2005 (has links)
Thesis (Ph.D.)--Ohio University, June, 2005. / Title from PDF t.p. Includes bibliographical references (p. 96-102)
43

Vybrané problémy topologické teorie míry s aplikacemi ve stochastické analýze / Some topics of topological measure theory with application in stochastic analysis

Kříž, Pavel January 2014 (has links)
Title: Some topics of topological measure theory with application in stochastic analysis Author: Pavel Kříž Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Josef Štěpán, DrSc., Department of Probability and Mathematical Statistics Abstract: This work studies identifications of values of probability limits based on trajectories of convergent (random) sequences. The key concept is the so called Probability Limit Identification Function (PLIF). The main concern is focused on the existence of PLIFs, mainly those, which are measurable and adapted. We also study in more detail special cases, when the convergence in probability and the convergence almost surely coincide. Furthermore, possible applications of the PLIF concept in stochastic analysis (path-wise representations of stochastic integrals and weak solutions of the stochastic differential equations), as well as in estimation theory (the existence of strongly consistent estimators) are outlined. The achieved results are based on analyses of the topologies on spaces of measures, spaces of random variables and spaces of real-valued functions. Keywords: Probability Limit, Identification, Almost-sure Convergence 1
44

Morphismes harmoniques et déformation de surfaces minimales dans des variétés de dimension 4 / Harmonic morphisms and deformation of minimal surfaces in manifolds of dimension 4

Makki, Ali 26 May 2014 (has links)
Dans cette thèse, nous étudions la structure d’un morphisme harmonique F d’une variété riemannienne M4 dans une surface N2 au voisinage d’un point critique mO. Si mO est un point I critique isolé ou si M4 est compact sans bord, nous montrons que F est pseudo-Holomorphe par rapport à une structure presque hermitienne definie dans un voisinage de mO. Si M4 est compact sans bord, les fibres singuliers de F sont des surfaces minimales avec points de branchement. Ensuite, nous étudions des exemples de morphismes harmoniques due a Burel de (S4, gk,l) dans S2 où (gk,I) est une famille de métriques conforme à la métrique canonique. Nous construisons tout d’abord une application semi-Conforme Φk,l de S4 dans S2 en composant deux applications semi-Conformes régulières, F de S4 dans S3 et Φk,i, de S3 dans S2. II résulte de Baird-Eells que le fibres régulier de øk,l pour tout k, I sont minimales. Si [k] = [l] = 1, l’ensemble des points critiques est donnée par l’image réciproque du pâle nord: il consiste en deux 2-Sphères ayant deux points d’intersection. Si k, I 6= 1 l’ensemble des points critiques sont les images réciproques du pôle nord (de la même façon que pour k = t = 1 deux sphères, mais avec une multiplicité I) ainsi que la pré-Image du pôle sud (un tore) avec multiplicité k. Enfin, nous étudions une construction due à Baird-Ou de morphismes harmoniques d’une ensembles ouverts de (S2×S2, can) dans S2. Nous vérifions qu’ils sont holomorphe par rapport à une des quatre structures complexes canoniques hermitiennes. / In this thesis, we are interested in harmonic morphisms between Riemannian manifolds (Mm, g) and (Nn, h) for m > n. Such a smooth map is a harmonic morphism if it pulls back local harmonic functions to local harmonic functions: if ƒ : V → ℝ is a harmonic function on an open subset V on N and Φ-1(V) is non-Empty, then the composition ƒ ∘ Φ : Φ-1(V) → ℝ is harmonic. The conformal transformations of the complex plane are harmonic morphisms. In the late 1970's Fuglede and Ishihara published two papers ([Fu]) and ([Is]), where they discuss their results on harmonic morphisms or mappings preserving harmonic functions. They characterize non-Constant harmonic morphisms F : (M,g) → (N,h) between Riemannian manifolds as those harmonic maps, which are horizontally conformal, where F horizontally conformal means : for any x ∈ M with dF(x) ≠ 0, the restriction of dF(x) to the orthogonal complement of kerdF(x) in TxM is conformal and surjective. This means that we are dealing with a special class of harmonic maps.
45

Quelques problèmes d'analyse géométrique dans les variétés presque complexes à bord. / Some problems of geometrical analysis in almost complex manifolds with boundary.

Peyron, Marianne 26 June 2013 (has links)
Nous étudions d'abord l'analyticité des applications CR entre deux hypersurfaces dans des variétés presque complexes. Nous démontrons l'analyticité d'une telle application dans deux cas distincts : premièrement dans le cas où les hypersurfaces de départ et d'arrivée sont le bord d'un domaine modèle et la structure presque complexe est une structure modèle, deuxièmement dans le cas où la structure presque complexe d'arrivée est une déformation d'une structure modèle et lorsque les hypersurfaces sont des petites perturbations de l'hypersurface $partialh$ définie par $partial h={zinC^n,RE(z_n)+|z'|^2=0}$. La preuve utilise la méthode de prolongation des systèmes d'équations aux dérivées partielles ainsi que la théorie des systèmes complets. Nous appliquons ensuite ces résultats pour généraliser le Théorème de Poincaré-Alexander au cas presque complexe. Le Théorème de Poincaré-Alexander stipule qu'une application holomorphe définie sur un ouvert de la boule unité de $C^n$ peut, sous certaines conditions, être prolongée en un biholomorphisme de la boule unité. Dans le cadre presque complexe, la boule unité n'est plus, à biholomorphisme près, le seul domaine strictement pseudoconvexe et homogène. Un domaine strictement pseudoconvexe et homogène est biholomorphe à un domaine modèle. Nous donnons ainsi une genéralisation du Théorème de Poincaré-Alexander pour les domaines modèles. Enfin, nous définissons les applications $J$-quasiconformes et démontrons que les ouverts et les sous variétés totalement réelles incluses dans le bord du domaine constituent des ensembles d'unicité pour les applications $J$-quasiconformes. Nous démontrons aussi qu'une application $J$-quasiconforme qui admet des limites nulles en tout point d'une sous-variété totatemement réelle incluse dans le bord du domaine est identiquement nulle. / We study the real analyticity of a CR mapping between two hypersurfaces in almost complex manifolds. We prove that a CR mapping defined on the boundary of a model domain is real analytic. We also prove that a CR mapping is real analytic when the almost complex structure of the codomain is a deformation of a model structure and when the hypersurfaces are small deformation of the hypersurface $partial h$ defined by $partial h={zinC^n,RE(z_n)+|z'|^2=0}$. We make use of a method of prolongation for the tangential Cauchy-Riemann equations and a result about complete systems. Then, we use the previous result to extend the Poincaré-Alexander Theorem in the almost complex case. The Poincaré-Alexander Theorem states that holomorphic mappings defined on an open subset of the unit ball of $C^n$ may, under certain conditions, be extended to a biholomorphism of the unit ball. In a complex manifold, every strongly pseudoconvex homogeneous domain is biholomorphic to the unit ball. In an almost complex manifold, the unit ball is not the only strongly pseudoconvex homogeneous domain. A strongly pseudoconvex homogeneous domain is biholomorphic to a model domain. We extend the Poincaré-Alexander Theorem theorem to model domains. Finally, we define $J$-quasiconformal mappings and we prove that open sets and totally real submanifolds of the boundary are unicity sets for $J$-quasiconformal mappings. We also prove that a $J$-quasiconformal mapping admitting zero limits at every point of a totally real submanifold of the boundary is identically zero.
46

Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices

Montealegre Scott, Juan 25 September 2017 (has links)
No description available.
47

Extensions au cadre Banachique de la notion d'opérateur de Hilbert-Schmidt

Abdillah, Said Amana 26 November 2012 (has links)
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schmidt. Dans un premier temps, on étudie d’une part les opérateurs p-sommants dans un espace de Banach X vers un autre espace de Banach Y et d’autre part, les opérateurs gamma-radonifiants dans un espace de Hilbert vers un autre espace de Banach.Dans un second temps, on s'intéresse aux opérateurs gamma-sommants dans des espaces de Banach, qui coïncident avec les opérateurs de Rademacher-bornés, ce qui nous amène aux opérateurs presque sommants. Enfin, on en déduit plusieurs généralisations naturelles de la notion d’opérateur de Hilbert-Schmidt aux espaces de Banach.-Les classes des opérateurs p-sommants de X dans Y .-La classe des opérateurs presque sommants de X dans Y qui coïncide avec la classe des opérateurs gamma-radonifiants de X dans Y.-La classe des opérateurs faible* 1-nucléaires de X dans Y. / This thesis is devoted to extending the notion of Banach Hilbert-Schmidt operator to the framework of Banach spaces. In a first step, we study p-summing operators from a Banach space X into a Banach space Y and gamma-radoniyfing operators from a Hilbert space into a Banach space. In a second step, we discuss gamma-summing operators between Banach spaces, which coincide with Rademacher-bounded operators, which leads to the notion of almost summing operators. Finally, we present serval natural generalizations of the notion of Hilbert-Schmidt operator to Banach spaces.- Classes of p-summing operators from X into Y. - The class of almost summing operators from X into Y, which coincides with the class of gamma-radoniyfing operators from X into Y.- The class of weak*1-nuclear operators from X into Y.
48

Théorèmes du type Ingham et fonctions orthogonales positives / Ingham type theorem and positive orthogonal functions

Delage, Florian 22 September 2016 (has links)
Le travail de la thèse est constitué de deux parties indépendantes traitant toutes les deux du comportement de solutions d’équations différentielles partielles. On s’intéressera dans un premier temps aux fonctions orthogonales positives à certains espaces puis à quelques résultats de type « Ingham ». L’existence ou non de fonctions orthogonales positives à certains espaces de fonctions quasi-périodiques a d’importantes implications, en particulier pour l’étude du comportement oscillatoire des solutions d’équations de membranes vibrantes. On se propose ici de clarifier la situation d’un sous-espace défini par trois périodes et de donner des pistes de réflexion pour le cas de quatre périodes ou plus. On peut utiliser les séries de Fourier non harmoniques pour résoudre certains problèmes de contrôle en utilisant des variantes du théorème d’Ingham. On s’intéressera spécifiquement ici aux problèmes que pose la version vectorielle de ce théorème. / The existence or non-existence of positive orthogonal functions for subspaces of almost periodical function has important applications in studying the oscillatory behavior of vibrations. Cazenave, Haraux and Komornik have obtained many theorems of this type. The purpose of this work is to answer an open question formulated in the 1980’s, and to completely clarify the situation for subspaces defined by three periods. We also give some results for subspaces defined by more periods than three periods. We also prove some vectorial result for Ingham type theorems.
49

LOCALLY PRIMITIVELY UNIVERSAL FORMS AND THE PRIMITIVE COUNTERPART TO THE FIFTEEN THEOREM

Gunawardana, Beruwalage Lakshika Kumari 01 September 2020 (has links)
An n-dimensional integral quadratic form over Z is a polynomial of the form f = f(x1, … ,xn) =∑_(1≤i,j ≤n)▒a_ij x_i x_j, where a_ij=a_ji in Z. An integral quadratic form is called positive definite if f(α_1, …,α_n) > 0 whenever (0, … , 0) ≠(α_1, …,α_n) in Z^n. A positive definite integral quadratic form is said to be almost (primitively) universal if it (primitively) represents all but at most finitely many positive integers. In general, almost primitive universality is a stronger property than almost universality. Main results of this study are: every primitively universal form non-trivially represents zero over every ring Z_p of p-adic integers, and every almost universal form in five or more variables is almost primitively universal. With use of these results and improving a result of G. Pall from 1946, we then provide criteria to determine whether a given integral quadratic lattice over a ring Z_p of p-adic integers is Z_p-universal or primitively Z_p-universal. The criteria are stated explicitly in terms of a Jordan splitting of the lattice. As an application of the local criteria, we complete the determination of the universal positive definite classically integral quaternary quadratic forms that are almost primitively universal, which was initiated in work of N. Budarina in 2010. Finally, with the use of these local results, we identify 28 positive definite classically integral primitively universal quaternary quadratic forms which were not known previously, introducing a conjecture obtained by a numerical approach, which could possibly be the primitive counterpart to the Fifteen Theorem proved by J.H. Conway and W.A. Schneeberger in 1993.
50

Almost Periodic Frequency Arrangement and Its Applications to Communications / 概周期周波数配置とその通信への応用

Nakazawa, Isao 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22585号 / 情博第722号 / 新制||情||124(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 梅野 健, 教授 山下 信雄, 教授 守倉 正博 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM

Page generated in 0.3205 seconds