• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers une meilleure compréhension du mode d’action des strigolactones et de leur interaction avec les autres hormones du développement / Towards a better understanding of strigolactone mode of action of and their interaction with other plant hormones

Saint Germain, Alexandre de 30 November 2012 (has links)
L'étude de la ramification chez le pois, à partir des mutants hyper-ramifiés ramosus (rms) a permis de mettre en évidence l'existence d'une nouvelle famille d'hormones végétales : les strigolactones, inhibant la ramification des plantes à graines. La découverte de cette hormone végétale ouvre de nouvelles pistes de recherche sur la biosynthèse et la perception de cette nouvelle hormone. Nous avons montré le rôle du gène PsBRC1, codant un facteur de transcription de type TCP et homologue du gène TEOSINTE BRANCHED1 du maïs, dans la voie de signalisation des strigolactones. L’étude de ce gène nous a permis d'avoir une meilleure compréhension de l’interaction entre strigolactones et cytokinines dans le contrôle de la ramification, de la dynamique de la levée de dormance des bourgeons axillaires, et d'effectuer les premières études de relations structure-activité des strigolactones sur l’inhibition de la ramification chez le pois.Nous avons étudié et caractérisé d'autres éléments dans la voie de signalisation. Chez le pois, deux mutants, autres que Psbrc1, ne répondent pas à l’application de strigolactones, rms3 et rms4. Le gène RMS4 code pour une protéine à boîte F. Nous nous sommes focalisés ici sur le mutant hyper-ramifié rms3. Nous avons montré que RMS3 est l'homologue du gène D14 du riz, codant pour une protéine de la superfamille des α-β/hydrolases. Ces protéines peuvent avoir une activité enzymatique et ainsi pourraient modifier les strigolactones en un composé actif. Le récepteur des gibbérellines GID1 appartient aussi à cette famille, RMS3 est donc un bon candidat pour être le récepteur des strigolactones. Nous avons utilisé une strigolactone radiomarquée afin d’étudier le métabolisme de l'hormone. Nous avons découvert que la strigolactone synthétique, 3H-GR24 est clivée en un composé inconnu au contact des racines, indépendamment de l'activité de la protéine RMS3. Ce composé de structure inconnue se retrouve aussi dans la sève du xylème alors que 3H-GR24 y est absent.Outre un phénotype hyperbranché les mutants rms présentent une diminution de la taille de leurs entre-nœuds, qui n'est pas due à l’augmentation de la ramification. Nous avons étudié l'origine du nanisme des mutants déficients en strigolactones et affectés dans la réponse à l’hormone. Des approches génétiques et moléculaires ont été utilisées pour tester une interaction possible entre les strigolactones et les gibbérellines. Nous avons montré que les strigolactones régulaient l’élongation des entre-nœuds indépendamment des gibbérellines.Le pois est un excellent modèle en génétique et en physiologie. Avec le développement de nouvelles techniques à l'INRA (TILLING; UNIGENE : ensemble de plus de 40000 séquences exprimées de pois), nous avons pu identifier de nouveaux gènes de biosynthèse des strigolactones chez le pois et obtenir plusieurs nouveaux mutants de pois. Ces mutants seront essentiels pour les futures études du laboratoire et pourront permettre d'identifier de nouveaux intermédiaires dans la biosynthèse et le métabolisme des strigolactones. / The study of shoot branching in pea, using the high branching ramosus (rms) mutants has highlighted the existence of a new family of plant hormones: the strigolactones, inhibiting shoot branching in seed plants. The discovery of this novel plant hormone opens novel research areas in the deciphering of strigolactone biosynthesis and strigolactone perception. We have shown the role of the pea TCP transcription factor, PsBRC1, the homolog of the maize TEOSINTE BRANCHED (TB1) in strigolactone signaling. The PsBRC1 gene was shown to have a role in integrating strigolactone and cytokinin pathways, and allowed to have a better understanding of the dynamics of bud outgrowth, and to perform the first strigolactone Structure-Activity Relationship studies for branching inhibition in pea. We investigated and characterized other elements in the signaling pathway, including the strigolactone receptor. In pea, two mutants, other than Psbrc1, do not respond to the application of strigolactones, rms3 and rms4. The RMS4 gene encodes an F-BOX protein and here we focused on the high branching rms3 pea mutant. We have shown that RMS3 is the homolog of the rice D14 gene encoding a protein of the α-β/hydrolase superfamily. Consequently RMS3 may have an enzymatic activity to modify strigolactone into an active compound. The gibberellin receptor GID1 also belongs to this family, therefore RMS3 is also a good candidate for the strigolactone receptor. We used a radiolabeled synthetic strigolactone, 3H-GR24, to investigate the metabolism of the hormone. We discovered that the synthetic strigolactone, 3H-GR24 is cleaved in an unknown compound in the root media independently of RMS3 activity, compound which is also found in the xylem sap in contrast to 3H-GR24. The rms mutants exhibit not only a high branching phenotype but also a reduced height which is not due to this high branching. We investigated the origin of the dwarfism of strigolactone-deficient and response mutants in pea. Genetic and molecular approaches have been used to test a possible interaction between strigolactones and gibberellins. We have shown that strigolactones regulate stem elongation independently of gibberellin. Pea is a powerful model plant for genetics and physiology. With the development of new facilities at INRA (TILLING; UNIGENE set of more than 40000 expressed sequences), we were able to identify new biosynthesis genes in pea and to obtain several novel pea mutants. These mutants will be essential for future studies of the laboratory in particular to identify new intermediates in strigolactone biosynthesis and metabolism.
2

Structural, Kinetic and Mutational Analysis of Two Bacterial Carboxylesterases

Liu, Ping 04 August 2007 (has links)
The crystal structures of two thermostable carboxylesterase Est30 and Est55 from Geobacillus stearothermophilus were determined to help understand their functions and applications in industry or medicine. The crystal structure of Est30 was determined at 1.63 Å resolution by the multiple anomalous dispersion method. The two-domain Est30 structure showed a large domain with a modified alpha/beta hydrolase core including a seven, rather than an eight-stranded beta sheet, and a smaller cap domain comprising three alpha helices. A 100 Da tetrahedral ligand, propyl acetate, was observed to be covalently bound to the side chain of Ser94 in the catalytic triad. This ligand complex represents the first tetrahedral intermediate in the reaction mechanism. Therefore, this Est30 crystal structure will help understand the mode of action of all enzymes in the serine hydrolase superfamily. Est55 is a bacterial homologue of the mammalian carboxylesterases involved in hydrolysis and detoxification of numerous peptides and drugs and in prodrug activation. Est55 crystals were grown at pH 6.2 and pH 6.8 and the structures were determined at resolutions of 2.0 and 1.58 Å respectively. Est55 folds into three domains, a catalytic domain, an α/β domain and a regulatory domain. This structure is in an inactive form; the side chain of His409, one of the catalytic triad residues, is pointing away from the active site. Moreover, the adjacent Cys408 is triply oxidized and lies in the oxyanion hole, which would block the entry of substrate to its binding site. This structure suggested a self-inactivation mechanism, however, Cys408 is not essential for enzyme activity. Mutation of Cys408 showed that hydrophobic side chains at this position were favorable, while polar serine was unfavorable for enzyme activity. Both Est30 and Est55 were shown to hydrolyze the prodrug CPT-11 into the active form SN-38. Therefore, Est30 and Est55 are potential candidates for use with irinotecan in cancer therapy. The catalytic efficiency (kcat/Km) of Est30 is about 10-fold lower than that of Est55. The effects of the Cys408 substitutions on Est55 activity differed for the two substrates, p-NP butyrate and CPT-11. Mutant C408V may provide a more stable form of Est55.

Page generated in 0.0992 seconds