• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 27
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Gefüge-Eigenschaftsbeziehung einer TiAl-Legierung mit Oxidationsschutz und Wärmedämmschicht

Straubel, Ariane 09 November 2016 (has links)
Etwa 27000 Flugzeuge durchqueren täglich den Luftraum über Europa. Dieser weiter steigende Flugverkehr erfordert neue Richtlinien für die Luftfahrzeuge. Im Besonderen stehen CO2- und NOX-Emission, Kerosinverbrauch und Lärmbelastung unter Optimierungsbedarf. Diese Anforderungen wurden bis 2050 vom Advisory Council for Aerospace Research in Europe (kurz: ACARE) festgelegt und werden wissenschaftlich unterstützt [3, 4]. Um diese Ziele zu erreichen, gibt es verschiedene Forschungsprogramme, Clean Sky ist ein EU-Technologieprogramm davon. In diesem Projekt werden sechs Demonstrator-Programme entwickelt, von denen MTU Aero Engines eines gestaltet. Im Rahmen dieses Projektes wurde eine Weiterentwicklung des Getriebefan (Geared Turbofan-GTF) erreicht, bei dem Fan und Niederdruckturbine durch ein Getriebe voneinander entkoppelt sind. Durch die optimierte Drehzahl beider Komponenten (vergrößerter Fan - langsamer, Niederdruckturbine (LPT) - schneller) wird die Turbinenleistung gesteigert und gleichzeitig die Geräuschemission minimiert. Entwickelt wurde der GTF von Pratt & Whitney in Kooperation mit MTU Aero Engines. Herkömmliche Varianten sehen vor, dass die Niederdruckturbine u.a. den Fan antreibt und zwar nur so schnell, dass der äußere Radius des Fans die zulässige Geschwindigkeit nicht überschreitet. Die herkömmlich verwendeten Nickelbasislegierungen in der Niederdruckturbine haben mit 8 g/cm3 eine zu hohe Dichte um einige Anforderungen im ACARE wirtschaftlich erfüllen zu können. Bereits 1967 hat die US Airforce das große Potential zur Gewichtsreduzierung durch Titanaluminid-Legierungen (TiAl-Legierungen) mit einer Dichte von rund 4 g/cm3 im Hochtemperaturbereich der Flugzeugtriebwerke erkannt. Zwischen 1980 und 1990 entwickelte das General Electric-Forschungscenter die gamma-TiAl-Legierung Ti-48Al-2Cr-2Nb, welche als erste kommerzielle Titanaluminidlegierung in der Niederdruckturbine von Flugzeugtriebwerken eingesetzt wurde. Eine weitere Legierung dieser Werkstoffgruppe kam erst ca. 15 Jahre später zum Einsatz, die TNM-Legierung. Wie man an diesem Beispiel sehen kann, dauert die Integration neuer Werkstoffe in der Luftfahrt aufgrund der notwendigen Vorversuche und Sicherheitsaspekte teilweise 20 Jahre. Seit September 2014 kommt im Triebwerk PW1100G GTF von Pratt & Whitney die geschmiedete Version der TNM-Legierung zum Einsatz. MTU Aero Engines AG München baut hierfür die Niederdruckturbine. Durch die hervorragenden Hochtemperatureigenschaften der gamma-TiAl-Legierungen wie z.B. thermische Stabilität der Mikrostruktur, Resistenz gegen Titanfeuer und hohe spezifische Fes-tigkeit, konnten sich die Titanaluminide in Konkurrenz zu den Nickelbasislegierungen sehr gut platzieren. Deswegen werden die beiden gamma-TiAl-Legierungen (Ti-48Al-2Cr-2Nb, TNMTM) bereits in den letzten Stufen der Niederdruckturbine eingesetzt. Ein Nachteil der gamma-Titanaluminide ist die begrenzte Oxidationsbeständigkeit über 750 °C, wodurch das Einsatzfeld als Hochtemperaturwerkstoff stark begrenzt wird. Um das Anwen-dungspotential der gamma-Titanaluminide weiter zu steigern und auch bei Temperaturen über 750 °C einzusetzen, ist eine Steigerung der Oxidationsbeständigkeit notwendig. Die Oxidationsbeständigkeit kann durch das Aufbringen von Oxidationsschutzschichten wie z.B. Al2O3 erreicht werden. Welche neben der Korrosionsbeständigkeit auch die thermisch-mechanischen Anforderungen des Substrat-Schicht-Verbundes sicherstellen müssen. Zur Erhöhung der Temperaturbelastbarkeit von gamma-TiAl-Schaufeln können zur thermischen Isolation keramische Wärmedämmschichten (WDS) aufgebracht werden. Aufgrund der WDS können höhere Prozesstemperaturen realisiert und die Lebensdauer des Grundwerkstoffs verlängert werden. Die Lebensdauer der Wärmedämmschichten und das Betriebsverhalten werden unter anderem durch eine gute Haftung auf dem Untergrund, eine niedrige Wärmeleitfähigkeit und einen thermisch stabilen Phasenaufbau bestimmt. Die Kombination aus Oxidationsschutz und Wärmedämmung wird bereits für Nickelbasislegierungen in der Brennkammer und Hochdruckturbine der Flugzeugtriebwerke eingesetzt. Um gamma-Titanaluminide in weitere Stufen der Niederdruckturbine oder Hochdruckturbine einzubringen, müssen diese Temperaturen von mindestens 900 °C aushalten und erfordern ebenso Beschichtungen zum Oxidations- und Wärmeschutz. Diese Schutzschichten finden für gamma-Titanaluminide bisher jedoch noch keine Anwendung.
22

Untersuchung atomarer Strukturen an geordnetem und nanokristallinem ternären Fe3Al / Studies of atomic scale structures of ordered and nanocrystalline ternary Fe3Al

Rademacher, Thomas 13 July 2011 (has links)
No description available.
23

Studium reakční syntézy intermetalických materiálů z depozitů kinetického naprašování binárních systémů obsahujících železo / Reaction synthesis of bulk intermetallic materials from cold spray deposits from binary powders containing iron

Dyčková, Lucie January 2015 (has links)
This thesis deals with reaction synthesis of materials Fe–Al, Fe–Cu and Fe–Ni from cold spray. In literature analysis are introduced these systems and for each system there is brief description of binary equilibrium diagram. Furthermore here are some short explanations of diffusion, Kirkendall effect and other possible processing technologies of intermetallic materials. In experimental part, samples of sprayed materials were annealed and then microstructural changes were investigated. This thesis contains photographs of microstructure, results from scanning electron microscopy, X-ray, and measurements of microhardness.
24

Influence of Two-Step Heat Treatments on Microstructure and Mechanical Properties of a β-Solidifying Titanium Aluminide Alloy Fabricated via Electron Beam Powder Bed Fusion

Moritz, Juliane, Teschke, Mirko, Marquardt, Axel, Heinze, Stefan, Heckert, Mirko, Stepien, Lukas, López, Elena, Brueckner, Frank, Walther, Frank, Leyens, Christoph 27 February 2024 (has links)
Additive manufacturing technologies, particularly electron beam powder bed fusion (PBF-EB/M), are becoming increasingly important for the processing of intermetallic titanium aluminides. This study presents the effects of hot isostatic pressing (HIP) and subsequent two-step heat treatments on the microstructure and mechanical properties of the TNM-B1 alloy (Ti–43.5Al–4Nb–1Mo–0.1B) fabricated via PBF-EB/M. Adequate solution heat treatment temperatures allow the adjustment of fully lamellar (FL) and nearly lamellar (NL-β) microstructures. The specimens are characterized by optical microscopy and scanning electron microscopy (SEM), X-ray computed tomography (CT), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). The mechanical properties at ambient temperatures are evaluated via tensile testing and subsequent fractography. While lack-of-fusion defects are the main causes of failure in the as-built condition, the mechanical properties in the heat-treated conditions are predominantly controlled by the microstructure. The highest ultimate tensile strength is achieved after HIP due to the elimination of lack-of-fusion defects. The results reveal challenges originating from the PBF-EB/M process, for example, local variations in chemical composition due to aluminum evaporation, which in turn affect the microstructures after heat treatment. For designing suitable heat treatment strategies, particular attention should therefore be paid to the microstructural characteristics associated with additive manufacturing.
25

Locally adapted microstructures in an additively manufactured titanium aluminide alloy through process parameter variation and heat treatment

Moritz, Juliane, Teschke, Mirko, Marquardt, Axel, Stepien, Lukas, López, Elena, Brueckner, Frank, Walther, Frank, Leyens, Christoph 27 February 2024 (has links)
Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.
26

Strukturell komplexe intermetallische Verbindungen im System Al-Mg-Zn

Berthold, Rico 26 November 2014 (has links) (PDF)
Die Elemente Al, Mg und Zn sind wichtige Komponenten für leichte und hochfeste Legierungen, wie die Al- oder Mg-Knetlegierungen. Darüber hinaus ist das Al-Mg-Zn-System sehr interessant, weil vier ternäre komplexe intermetallische Phasen, genannt τ1, τ2, Φ und q, darin vorkommen. Die aktuellen experimentellen Phasendiagramme des Al-Mg-Zn-Systems enthalten nur provisorische oder keine Homogenitätsbereiche der Φ-, τ2- und der q-Phase aufgrund unzureichender experimenteller Daten. Ziel der Arbeiten war es, die Homogenitätsbereiche der q-, τ2- und der Φ-Phase neu zu ermitteln und die Kristallstruktur der Φ-Phase zu bestimmen. Proben wurden durch Schmelzen und Wärmebehandlung in Ta-Ampullen oder durch Zentrifugieren aus der Schmelze hergestellt und durch XRD, SEM, EDXS, WDXS und DSC charakterisiert. Während der Neuuntersuchung der Al-Mg-Zn Phasengleichgewichte in der Nähe des Teilsystems Mg-Zn und nahe bei τ1 wurde eine Reihe von neuen ternären Phasen entdeckt. Die Kristallstrukturen für die Φ-Phase (Pbcm, a = 8,9374 (2) Å, b = 16,812 (3) Å, c = 19,586 (4) a) und drei der neuen intermetallischen Verbindungen wurden gelöst und die Kristallstruktur des τ2 Phase wurde erneut untersucht. Während τ2 (Pa-3, a = 23,034 (3) Å) ein Approximant der ikosaedrischen quasikristallinen Phase q ist, erwies sich eine der neuen Phasen (τd, Imm2, a = 5,2546 (2), b = 40,240 (2), c = 25,669 (1) Å) als dekagonaler Approximant. Überraschenderweise wurde eine Phase (Fd-3m, a = 27,5937 (9) Å) gefunden, die isotyp zu der binären Phase β-Al3Mg2 ist, aber eine Zn-reiche Zusammensetzung hat. / The elements Al, Mg and Zn are major components for a large number of light and high strength alloys, such as the Al-based alloys of the 7xxx series. In addition, the Al-Mg-Zn system has attracted much interest because four complex metallic alloy phases, called τ1, τ2, Φ and q are formed as ternary intermetallic compounds. The current experimental phase diagrams of the Al-Mg-Zn system contain only provisional or no homogeneity ranges of the Φ phase, τ2 phase and the q phase due to insufficient experimental data. The aim of the work was to redetermine the homogeneity ranges of the q, τ2 and the Φ phases and to determine the crystal structure of the Φ phase for a reliable data set. Samples were prepared by furnace-controlled melting and annealing in Ta ampoules or by centrifugation from the self-flux and characterized by XRD, SEM, EDXS, WDXS and DSC. While reinvestigating the Al-Mg-Zn phase equilibria in the vicinity of the subsystem Mg-Zn close to τ1, a number of new ternary phases were discovered. Single phase material could be obtained for the known Φ and τ2 phases and for four new intermetallic compounds. The crystal structures for the Φ phase and two of the new intermetallic compounds were solved and the crystal structure of the τ2 phase was reinvestigated. While τ2 (Pa-3, a = 23.034(3) Å) is an approximant of the icosahedral quasicrystalline phase q, the Φ phase (Pbcm, a = 8.9374(2) Å, b = 16.812(3) Å, c = 19.586(4) Å) and one of the new phases (Imm2, a = 5.2546(2), b = 40.240(2), c = 25.669(1) Å) turned out to be decagonal approximants. Surprisingly, we have found one phase (Fd-3m, a = 27.5937 (9) Å) isotypic to the Samson’s phase β-Al3Mg2 at Zn rich composition.
27

Strukturell komplexe intermetallische Verbindungen im System Al-Mg-Zn

Berthold, Rico 29 October 2014 (has links)
Die Elemente Al, Mg und Zn sind wichtige Komponenten für leichte und hochfeste Legierungen, wie die Al- oder Mg-Knetlegierungen. Darüber hinaus ist das Al-Mg-Zn-System sehr interessant, weil vier ternäre komplexe intermetallische Phasen, genannt τ1, τ2, Φ und q, darin vorkommen. Die aktuellen experimentellen Phasendiagramme des Al-Mg-Zn-Systems enthalten nur provisorische oder keine Homogenitätsbereiche der Φ-, τ2- und der q-Phase aufgrund unzureichender experimenteller Daten. Ziel der Arbeiten war es, die Homogenitätsbereiche der q-, τ2- und der Φ-Phase neu zu ermitteln und die Kristallstruktur der Φ-Phase zu bestimmen. Proben wurden durch Schmelzen und Wärmebehandlung in Ta-Ampullen oder durch Zentrifugieren aus der Schmelze hergestellt und durch XRD, SEM, EDXS, WDXS und DSC charakterisiert. Während der Neuuntersuchung der Al-Mg-Zn Phasengleichgewichte in der Nähe des Teilsystems Mg-Zn und nahe bei τ1 wurde eine Reihe von neuen ternären Phasen entdeckt. Die Kristallstrukturen für die Φ-Phase (Pbcm, a = 8,9374 (2) Å, b = 16,812 (3) Å, c = 19,586 (4) a) und drei der neuen intermetallischen Verbindungen wurden gelöst und die Kristallstruktur des τ2 Phase wurde erneut untersucht. Während τ2 (Pa-3, a = 23,034 (3) Å) ein Approximant der ikosaedrischen quasikristallinen Phase q ist, erwies sich eine der neuen Phasen (τd, Imm2, a = 5,2546 (2), b = 40,240 (2), c = 25,669 (1) Å) als dekagonaler Approximant. Überraschenderweise wurde eine Phase (Fd-3m, a = 27,5937 (9) Å) gefunden, die isotyp zu der binären Phase β-Al3Mg2 ist, aber eine Zn-reiche Zusammensetzung hat.:1 Einleitung 1 2 Grundlagen 5 2.1 Frank-Kasper-Phasen und tetraedrisch dicht gepackte Strukturen 5 2.2 Parkettierungen, Quasikristalle and Approximanten 11 2.3 Phasendiagramme und Phasen des Al-Mg-Zn Systems 16 3 Experimentelle Methoden und Theoretische Berechnungen 24 3.1 Ausgangsstoffe 24 3.2 Präparation der Proben 24 3.2.1 Schmelzspinnen 25 3.2.2 Schmelzzentrifugation 26 3.2.3 Abkühlvarianten 26 3.3 Charakterisierung der Legierungen 27 3.3.1 Chemische Analysen 27 3.3.2 Metallografie, Röntgenspektroskopie, Elektronenbeugung 28 3.3.3 DSC- und Massendichtemessungen, Messungen des elektrischen Widerstands 29 3.3.4 Pulver-Röntgendiffraktion und Pulver-Neutronendiffraktion 29 3.3.5 Einkristall-Röntgendiffraktion 30 3.4 Theoretische Berechnungen 31 3.4.1 Berechnungen der elektronischen Struktur 31 3.4.2 Gesamtenergieberechnungen 31 3.4.3 Calphad-Berechnungen und DTA-Simulation 32 4 Ergebnisse 34 4.1 Die Phi-Phase 34 4.1.1 Phasenanalyse 35 4.1.2 Physikalische Eigenschaften 44 4.1.3 Kristallchemie 45 4.1.4 Ergebnisse der Gesamtenergieberechnungen, DOS 57 4.2 Die tau-2-Phase 59 4.2.1 Phasenanalyse 60 4.2.2 Strukturmodellierung mit kanonischen Zell-Parkettierungen 73 4.2.3 Strukturverfeinerung 77 4.2.4 Kristallchemie 83 4.2.5 Ergebnisse der Gesamtenergieberechnungen 88 4.3 Primäre Phasenfelder der Mg-reichen Seite des Al-Mg-Zn Systems und die q-Phase 93 4.3.1 Die quasikristalline Phase q und ihr komplex-reguläres Eutektikum 98 4.4 Neue komplexe intermetallische Verbindungen im Al-Mg-Zn System 106 4.4.1 Phasenanalytische Untersuchungen in der Nähe des binären Teilsystems Mg-Zn 106 4.4.2 Physikalische Eigenschaften 113 4.4.3 Kristallchemie 114 4.4.3.1 Die beta-Zn-Phase 114 4.4.3.2 Die tau-d-Phase, ein dekagonaler Approximant 125 4.4.3.3 Die lambda-Phase 134 5 Zusammenfassung 141 6 Literatur 149 A Anhang 159 A.1 Verfeinerung der Einkristall-Röntgenbeugungsdaten 159 A.2 Grundlagen der DTA-Simulation 160 A.2.1 DTA-Simulation in VBA für den Excel-Export von Pandat2012 161 A.3 Zusätzliche Information über die Phi-Phase des Al-Mg-Zn Systems 168 A.3.1 Informationen zu den effektiven Paarpotentialen für das ternäre Al-Mg-Zn System 172 A.4 Zusätzliche Informationen über die tau-2-Phase im Al-Mg-Zn System 175 A.5 Zusätzliche Informationen über die Abtastung der primären Phasenfelder 180 A.6 Zusätzliche Informationen über die beta-Zn-Phase im System Al-Mg-Zn 185 A.7 Zusätzliche Informationen über die tau-d-Phase im System Al-Mg-Zn 191 A.8 Zusätzliche Informationen über die lambda-Phase im System Al-Mg-Zn 195 / The elements Al, Mg and Zn are major components for a large number of light and high strength alloys, such as the Al-based alloys of the 7xxx series. In addition, the Al-Mg-Zn system has attracted much interest because four complex metallic alloy phases, called τ1, τ2, Φ and q are formed as ternary intermetallic compounds. The current experimental phase diagrams of the Al-Mg-Zn system contain only provisional or no homogeneity ranges of the Φ phase, τ2 phase and the q phase due to insufficient experimental data. The aim of the work was to redetermine the homogeneity ranges of the q, τ2 and the Φ phases and to determine the crystal structure of the Φ phase for a reliable data set. Samples were prepared by furnace-controlled melting and annealing in Ta ampoules or by centrifugation from the self-flux and characterized by XRD, SEM, EDXS, WDXS and DSC. While reinvestigating the Al-Mg-Zn phase equilibria in the vicinity of the subsystem Mg-Zn close to τ1, a number of new ternary phases were discovered. Single phase material could be obtained for the known Φ and τ2 phases and for four new intermetallic compounds. The crystal structures for the Φ phase and two of the new intermetallic compounds were solved and the crystal structure of the τ2 phase was reinvestigated. While τ2 (Pa-3, a = 23.034(3) Å) is an approximant of the icosahedral quasicrystalline phase q, the Φ phase (Pbcm, a = 8.9374(2) Å, b = 16.812(3) Å, c = 19.586(4) Å) and one of the new phases (Imm2, a = 5.2546(2), b = 40.240(2), c = 25.669(1) Å) turned out to be decagonal approximants. Surprisingly, we have found one phase (Fd-3m, a = 27.5937 (9) Å) isotypic to the Samson’s phase β-Al3Mg2 at Zn rich composition.:1 Einleitung 1 2 Grundlagen 5 2.1 Frank-Kasper-Phasen und tetraedrisch dicht gepackte Strukturen 5 2.2 Parkettierungen, Quasikristalle and Approximanten 11 2.3 Phasendiagramme und Phasen des Al-Mg-Zn Systems 16 3 Experimentelle Methoden und Theoretische Berechnungen 24 3.1 Ausgangsstoffe 24 3.2 Präparation der Proben 24 3.2.1 Schmelzspinnen 25 3.2.2 Schmelzzentrifugation 26 3.2.3 Abkühlvarianten 26 3.3 Charakterisierung der Legierungen 27 3.3.1 Chemische Analysen 27 3.3.2 Metallografie, Röntgenspektroskopie, Elektronenbeugung 28 3.3.3 DSC- und Massendichtemessungen, Messungen des elektrischen Widerstands 29 3.3.4 Pulver-Röntgendiffraktion und Pulver-Neutronendiffraktion 29 3.3.5 Einkristall-Röntgendiffraktion 30 3.4 Theoretische Berechnungen 31 3.4.1 Berechnungen der elektronischen Struktur 31 3.4.2 Gesamtenergieberechnungen 31 3.4.3 Calphad-Berechnungen und DTA-Simulation 32 4 Ergebnisse 34 4.1 Die Phi-Phase 34 4.1.1 Phasenanalyse 35 4.1.2 Physikalische Eigenschaften 44 4.1.3 Kristallchemie 45 4.1.4 Ergebnisse der Gesamtenergieberechnungen, DOS 57 4.2 Die tau-2-Phase 59 4.2.1 Phasenanalyse 60 4.2.2 Strukturmodellierung mit kanonischen Zell-Parkettierungen 73 4.2.3 Strukturverfeinerung 77 4.2.4 Kristallchemie 83 4.2.5 Ergebnisse der Gesamtenergieberechnungen 88 4.3 Primäre Phasenfelder der Mg-reichen Seite des Al-Mg-Zn Systems und die q-Phase 93 4.3.1 Die quasikristalline Phase q und ihr komplex-reguläres Eutektikum 98 4.4 Neue komplexe intermetallische Verbindungen im Al-Mg-Zn System 106 4.4.1 Phasenanalytische Untersuchungen in der Nähe des binären Teilsystems Mg-Zn 106 4.4.2 Physikalische Eigenschaften 113 4.4.3 Kristallchemie 114 4.4.3.1 Die beta-Zn-Phase 114 4.4.3.2 Die tau-d-Phase, ein dekagonaler Approximant 125 4.4.3.3 Die lambda-Phase 134 5 Zusammenfassung 141 6 Literatur 149 A Anhang 159 A.1 Verfeinerung der Einkristall-Röntgenbeugungsdaten 159 A.2 Grundlagen der DTA-Simulation 160 A.2.1 DTA-Simulation in VBA für den Excel-Export von Pandat2012 161 A.3 Zusätzliche Information über die Phi-Phase des Al-Mg-Zn Systems 168 A.3.1 Informationen zu den effektiven Paarpotentialen für das ternäre Al-Mg-Zn System 172 A.4 Zusätzliche Informationen über die tau-2-Phase im Al-Mg-Zn System 175 A.5 Zusätzliche Informationen über die Abtastung der primären Phasenfelder 180 A.6 Zusätzliche Informationen über die beta-Zn-Phase im System Al-Mg-Zn 185 A.7 Zusätzliche Informationen über die tau-d-Phase im System Al-Mg-Zn 191 A.8 Zusätzliche Informationen über die lambda-Phase im System Al-Mg-Zn 195

Page generated in 0.0833 seconds