Spelling suggestions: "subject:"amorphe silizium"" "subject:"amorphe silizium1""
1 |
Organische Feldeffekt-Transistoren: Modellierung und Simulation / Organic field-effect transistors: modeling and simulationLindner, Thomas 17 April 2005 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Simulation und Modellierung organischer Feldeffekt-Transistoren (OFETs). Mittels numerischer Simulationen wurden detaillierte Untersuchungen zu mehreren Problemstellungen durchgeführt. So wurde der Einfluss einer exponentiellen Verteilung von Trapzuständen, entsprechend dem sogenannten a-Si- oder TFT-Modell, auf die Transistorkennlinien untersucht. Dieses Modell dient der Beschreibung von Dünnschicht-Transistoren mit amorphen Silizium als aktiver Schicht und wird teils auch für organische Transistoren als zutreffend angesehen. Dieser Sachverhalt wird jedoch erstmals in dieser Arbeit detailliert untersucht und simulierte Kennlinien mit gemessenen Kennlinien von OFETs verglichen. Insbesondere aufgrund der Dominanz von Hysterese-Effekten in experimentellen Kennlinien ist jedoch eine endgültige Aussage über die Gültigkeit des a-Si-Modells schwierig. Neben dem a-Si-Modell werden auch noch andere Modelle diskutiert, z.B. Hopping-Transport zwischen exponentiell verteilten lokalisierten Zuständen (Vissenberg, Matters). Diese Modelle liefern, abhängig von den zu wählenden Modellparametern, zum Teil ähnliche Abhängigkeiten. Möglicherweise müssen die zu wählenden Modellparameter selbst separat gemessen werden, um eindeutige Schlussfolgerungen über den zugrundeliegenden Transportmechanismus ziehen zu können. Unerwünschte Hysterese-Effekte treten dabei sowohl in Transistorkennlinien als auch in Kapazitäts-Spannungs- (CV-) Kennlinien organischer MOS-Kondensatoren auf. Diese Effekte sind bisher weder hinreichend experimentell charakterisiert noch von ihren Ursachen her verstanden. In der Literatur findet man Annahmen, dass die Umladung von Trapzuständen oder bewegliche Ionen ursächlich sein könnten. In einer umfangreichen Studie wurde daher der Einfluß von Trapzuständen auf quasistatische CV-Kennlinien organischer MOS-Kondensatoren untersucht und daraus resultierende Hysterese-Formen vorgestellt. Aus den Ergebnissen läßt sich schlussfolgern, dass allein die Umladung von Trapzuständen nicht Ursache für die experimentell beobachteten Hysteresen in organischen Bauelementen sein kann. Eine mögliche Erklärung für diese Hysterese-Effekte wird vorgeschlagen und diskutiert. In einem weiteren Teil der Arbeit wird im Detail die Arbeitsweise des source-gated Dünnschicht-Transistors (SGT) aufgezeigt, ein Transistortyp, welcher erst kürzlich in der Literatur eingeführt wurde. Dies geschieht am Beispiel eines Transistors auf der Basis von a-Si als aktiver Schicht, die Ergebnisse lassen sich jedoch analog auch auf organische Transistoren übertragen. Es wird geschlussfolgert, dass der SGT ein gewöhnlich betriebener Dünnschicht-Transistor ist, limitiert durch das Sourcegebiet mit großem Widerstand. Die detaillierte Untersuchung des SGT führt somit auf eine Beschreibung, die im Gegensatz zur ursprünglich verbal diskutierten Arbeitsweise steht. Ambipolare organische Feldeffekt-Transistoren sind ein weiterer Gegenstand der Arbeit. Bei der Beschreibung ambipolarer Transistoren vernachlässigen bisherige Modelle sowohl die Kontakteigenschaften als auch die Rekombination von Ladungsträgern. Beides wird hingegen in den vorgestellten numerischen Simulationen erstmalig berücksichtigt. Anhand eines Einschicht-Modellsystems wurde die grundlegende Arbeitsweise von ambipolaren (double-injection) OFETs untersucht. Es wird der entscheidende Einfluß der Kontakte sowie die Abhängigkeit gegenüber Variationen von Materialparametern geklärt. Sowohl der Kontakteinfluß als auch Rekombination sind entscheidend für die Arbeitsweise. Zusätzlich werden Möglichkeiten und Einschränkungen für die Datenanalyse mittels einfacher analytischer Ausdrücke aufgezeigt. Es zeigte sich, dass diese nicht immer zur Auswertung von Kennlinien herangezogen werden dürfen. Weiterhin werden erste Simulationsergebnisse eines ambipolaren organischen Heterostruktur-TFTs mit experimentellen Daten verglichen.
|
2 |
Organische Feldeffekt-Transistoren: Modellierung und SimulationLindner, Thomas 23 March 2005 (has links)
Die vorliegende Arbeit befasst sich mit der Simulation und Modellierung organischer Feldeffekt-Transistoren (OFETs). Mittels numerischer Simulationen wurden detaillierte Untersuchungen zu mehreren Problemstellungen durchgeführt. So wurde der Einfluss einer exponentiellen Verteilung von Trapzuständen, entsprechend dem sogenannten a-Si- oder TFT-Modell, auf die Transistorkennlinien untersucht. Dieses Modell dient der Beschreibung von Dünnschicht-Transistoren mit amorphen Silizium als aktiver Schicht und wird teils auch für organische Transistoren als zutreffend angesehen. Dieser Sachverhalt wird jedoch erstmals in dieser Arbeit detailliert untersucht und simulierte Kennlinien mit gemessenen Kennlinien von OFETs verglichen. Insbesondere aufgrund der Dominanz von Hysterese-Effekten in experimentellen Kennlinien ist jedoch eine endgültige Aussage über die Gültigkeit des a-Si-Modells schwierig. Neben dem a-Si-Modell werden auch noch andere Modelle diskutiert, z.B. Hopping-Transport zwischen exponentiell verteilten lokalisierten Zuständen (Vissenberg, Matters). Diese Modelle liefern, abhängig von den zu wählenden Modellparametern, zum Teil ähnliche Abhängigkeiten. Möglicherweise müssen die zu wählenden Modellparameter selbst separat gemessen werden, um eindeutige Schlussfolgerungen über den zugrundeliegenden Transportmechanismus ziehen zu können. Unerwünschte Hysterese-Effekte treten dabei sowohl in Transistorkennlinien als auch in Kapazitäts-Spannungs- (CV-) Kennlinien organischer MOS-Kondensatoren auf. Diese Effekte sind bisher weder hinreichend experimentell charakterisiert noch von ihren Ursachen her verstanden. In der Literatur findet man Annahmen, dass die Umladung von Trapzuständen oder bewegliche Ionen ursächlich sein könnten. In einer umfangreichen Studie wurde daher der Einfluß von Trapzuständen auf quasistatische CV-Kennlinien organischer MOS-Kondensatoren untersucht und daraus resultierende Hysterese-Formen vorgestellt. Aus den Ergebnissen läßt sich schlussfolgern, dass allein die Umladung von Trapzuständen nicht Ursache für die experimentell beobachteten Hysteresen in organischen Bauelementen sein kann. Eine mögliche Erklärung für diese Hysterese-Effekte wird vorgeschlagen und diskutiert. In einem weiteren Teil der Arbeit wird im Detail die Arbeitsweise des source-gated Dünnschicht-Transistors (SGT) aufgezeigt, ein Transistortyp, welcher erst kürzlich in der Literatur eingeführt wurde. Dies geschieht am Beispiel eines Transistors auf der Basis von a-Si als aktiver Schicht, die Ergebnisse lassen sich jedoch analog auch auf organische Transistoren übertragen. Es wird geschlussfolgert, dass der SGT ein gewöhnlich betriebener Dünnschicht-Transistor ist, limitiert durch das Sourcegebiet mit großem Widerstand. Die detaillierte Untersuchung des SGT führt somit auf eine Beschreibung, die im Gegensatz zur ursprünglich verbal diskutierten Arbeitsweise steht. Ambipolare organische Feldeffekt-Transistoren sind ein weiterer Gegenstand der Arbeit. Bei der Beschreibung ambipolarer Transistoren vernachlässigen bisherige Modelle sowohl die Kontakteigenschaften als auch die Rekombination von Ladungsträgern. Beides wird hingegen in den vorgestellten numerischen Simulationen erstmalig berücksichtigt. Anhand eines Einschicht-Modellsystems wurde die grundlegende Arbeitsweise von ambipolaren (double-injection) OFETs untersucht. Es wird der entscheidende Einfluß der Kontakte sowie die Abhängigkeit gegenüber Variationen von Materialparametern geklärt. Sowohl der Kontakteinfluß als auch Rekombination sind entscheidend für die Arbeitsweise. Zusätzlich werden Möglichkeiten und Einschränkungen für die Datenanalyse mittels einfacher analytischer Ausdrücke aufgezeigt. Es zeigte sich, dass diese nicht immer zur Auswertung von Kennlinien herangezogen werden dürfen. Weiterhin werden erste Simulationsergebnisse eines ambipolaren organischen Heterostruktur-TFTs mit experimentellen Daten verglichen.
|
Page generated in 0.0571 seconds