• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 20
  • 18
  • 12
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 39
  • 36
  • 34
  • 33
  • 32
  • 31
  • 31
  • 24
  • 24
  • 23
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells

Labrune, Martin 20 May 2011 (has links) (PDF)
This thesis presents a work which has been devoted to the growth of silicon thin films on crystalline silicon for photovoltaic applications by means of RF PECVD. The primary goal of this work was to obtain an amorphous growth on any c-Si surface in order to provide an efficient passivation, as required in heterojunction solar cells. Indeed, we demonstrated that epitaxial or mixed phase growths, easy to obtain on (100) Si, would lead to poor surface passivation. We proved that growing a few nm thin a-Si1-xCx:H alloy film was an efficient, stable and reproducible way to hinder epitaxy while keeping an excellent surface passivation by the subsequent deposition of a-Si:H films. Process optimization mainly based on Spectroscopic Ellipsometry, Effective lifetime measurements (Sinton lifetime tester) and current-voltage characterization led us to demonstrate that it was possible to obtain a-Si:H/c-Si heterojunction solar cells with stable VOC of 710 mV and FF of 76 % on flat (n) c-Si wafers, with solar cells of 25 cm2 whose metallization was realized by screen-printing technology. This work has also demonstrated the viability of a completely dry process where the native oxide is removed by SiF4 plasma etching instead of the wet HF removal. Last but not least, the epitaxial growth of silicon thin films, undoped and n or p-type doped, on (100)-oriented surfaces has been studied by Spectroscopic Ellipsometry and Hall effect measurements. We have been able to fabricate homojunction solar cells with a p-type emitter as well as p-i-n structures with an undoped epitaxial absorber on a heavily-doped (p) c-Si wafers.
32

Dosimetric pre-treatment verification with an electronic portal imaging device

Wåhlin, Erik January 2006 (has links)
<p>A commercially available amorphous silicon electronic portal imaging device (EPID) was studied with regard to its dosimetric properties and to determine its usefulness as a tool for dosimetric pre-treatment verification of radiotherapy treatment fields. The dosimetric properties that were studied include reproducibility over time, linearity with dose, dose rate dependence and ghosting effects. The pre-treatment verification is performed by acquiring dosimetric images with the EPID and comparing these images with predicted images, calculated by the treatment planning system. This method for verification was evaluated. Also, the calibration and configuration of the treatment planning system and of the EPID for dosimetric verification was performed and is presented here.</p><p>The dosimetric properties of the EPID were found to be suitable for the measurements for which it is intended. It is linear with dose and does not show significant dose rate dependence or ghosting effects. As a pre-treatment verification system it is accurate within 3% and 3mm for ~99% of a region around the irradiated area of the image.</p>
33

Dosimetric pre-treatment verification with an electronic portal imaging device

Wåhlin, Erik January 2006 (has links)
A commercially available amorphous silicon electronic portal imaging device (EPID) was studied with regard to its dosimetric properties and to determine its usefulness as a tool for dosimetric pre-treatment verification of radiotherapy treatment fields. The dosimetric properties that were studied include reproducibility over time, linearity with dose, dose rate dependence and ghosting effects. The pre-treatment verification is performed by acquiring dosimetric images with the EPID and comparing these images with predicted images, calculated by the treatment planning system. This method for verification was evaluated. Also, the calibration and configuration of the treatment planning system and of the EPID for dosimetric verification was performed and is presented here. The dosimetric properties of the EPID were found to be suitable for the measurements for which it is intended. It is linear with dose and does not show significant dose rate dependence or ghosting effects. As a pre-treatment verification system it is accurate within 3% and 3mm for ~99% of a region around the irradiated area of the image.
34

Laser Fired Aluminum Emitter for High Efficiency Silicon Photovoltaics Using Hydrogenated Amorphous Silicon and Silicon Oxide Dielectric Passivation

Fischer, Anton H. 31 December 2010 (has links)
This thesis proposes and demonstrates a hydrogenated amorphous silicon passivated, inverted photovoltaic device on n-type silicon, utilizing a Laser Fired Emitter on a rear i-a- Si:H/SiOx dielectric stack. This novel low-temperature-fabricated device architecture constitutes the first demonstration of an LFE on a dielectric passivation stack. The optimization of the device is explored through Sentaurus computational modeling, predicting a potential efficiency of >20%. Proof of concept devices are fabricated using the DC Saddle Field PECVD system for the deposition of hydrogenated amorphous silicon passivation layers. Laser parameters are explored highlighting pulse energy density as a key performance determining factor. Annealing of devices in nitrogen atmosphere shows performance improvements albeit that the maximum annealing temperature is limited by the thermal stability of the passivation. A proof of concept device efficiency of 11.1% is realized forming the basis for further device optimization.
35

Laser Fired Aluminum Emitter for High Efficiency Silicon Photovoltaics Using Hydrogenated Amorphous Silicon and Silicon Oxide Dielectric Passivation

Fischer, Anton H. 31 December 2010 (has links)
This thesis proposes and demonstrates a hydrogenated amorphous silicon passivated, inverted photovoltaic device on n-type silicon, utilizing a Laser Fired Emitter on a rear i-a- Si:H/SiOx dielectric stack. This novel low-temperature-fabricated device architecture constitutes the first demonstration of an LFE on a dielectric passivation stack. The optimization of the device is explored through Sentaurus computational modeling, predicting a potential efficiency of >20%. Proof of concept devices are fabricated using the DC Saddle Field PECVD system for the deposition of hydrogenated amorphous silicon passivation layers. Laser parameters are explored highlighting pulse energy density as a key performance determining factor. Annealing of devices in nitrogen atmosphere shows performance improvements albeit that the maximum annealing temperature is limited by the thermal stability of the passivation. A proof of concept device efficiency of 11.1% is realized forming the basis for further device optimization.
36

Hydrogenated polymorphous silicon: establishing the link between hydrogen microstructure and irreversible solar cell kinetics during light soaking

Kim, Ka-Hyun 09 October 2012 (has links) (PDF)
Cette thèse est consacrée au silicium polymorphe hydrogéné (pm-Si:H). Elle porte tout d'abord sur une étude du pm-Si :H puis sur une étude des cellules photovoltaïques fabriquées à partir de ce matériau. Le pm-Si:H est formé de couches minces nanostructurées et peut être déposé par PECVD conventionnelle. Les effets des différents paramètres de dépôt (mélanges gazeux, pression, puissance RF, température du substrat) sur les propriétés du matériau ont été étudiés pour optimiser sa qualité. La caractérisation des couches a été un enjeu primordial. Pour cela, nous avons choisi de combiner une palette très large de méthodes de caractérisation (ellipsomètrie spectroscopique, exodiffusion d'hydrogène, SIMS, FTIR, AFM, etc...). A cause de la contribution des nanoparticules de silicium dans le plasma, la nature du dépôt du pm-Si:H montre la différence contrairement au a-Si:H pour lequel le dépôt se fait par le biais de radicaux ionisés. L'étude des conditions du procédé nous a conduit à fabriquer des cellules solaires d'un rendement initial de 9.22 % avec un facteur de forme élevé (74.1), mais aussi de démontrer des effets de vieillissement inhabituels, tels que i) une dégradation initiale rapide, ii) une dégradation irréversible, et iii) de grands changements structuraux macroscopiques. Nous avons découvert que le principal problème se situe entre le substrat et la couche mince de silicium. L'hydrogène moléculaire diffuse et s'accumule à l'interface entre le substrat et la couche mince, ce qui introduit un délaminage local qui a pour conséquence une dégradation initiale rapide des performances des cellules. Nous avons trouvé que sous éclairement une structure PIN facilite l'accumulation d'hydrogène et le délaminage à l'interface entre le substrat et la couche dopée p. Cependant, l'utilisation d'une structure NIP empêche l'accumulation d'hydrogène et le délaminage. Cela nous a permis de fabriquer des cellules solaires pm-Si:H de structure NIP d'un rendement stable de 8.43 %, mais aussi de démontrer une degradation minimale (10 %) après un vieillissement de 500 heures.
37

Analysis of the Deep Sub-Micron a-Si:H Thin Film Transistors

Fathololoumi, Saeed January 2005 (has links)
The recent developments of high resolution flat panel imagers have prompted interests in fabricating smaller on-pixel transistors to obtain higher fill factor and faster speed. This thesis presents fabrication and modeling of short channel amorphous silicon (a-Si:H) vertical thin film transistors (VTFT). <br /><br /> A variety of a-Si:H VTFTs with different channel lengths, from 100 nm to 1 &mu;m, are successfully fabricated using the discussed processing steps. Different structural and electrical characteristics of the fabricated device are measured. The results of I-V and C-V characteristics are comprehensively discussed. The 100 nm channel length transistor performance is diverged from regular long channel TFT characteristics, as the short channel effects become dominant in the device, giving rise to necessity of having a physical model to explain such effects. <br /><br /> An above threshold model for a-Si:H VTFT current characteristics is extracted. The transport mechanisms are explained and simulated for amorphous silicon material to be used in the device model. The final model shows good agreement with experimental results. However, we used numerical simulation, run in Medici, to further verify the model validity. Simulation allows us to vary different device and material parameters in order to optimize fabrication process for VTFT. The capacitance behavior of the device is extensively studied alongside with a TFT breakdown discussion.
38

Active Matrix Flat Panel Bio-Medical X-ray Imagers

Lai, Jackson January 2007 (has links)
This work investigates the design, system integration, optimization, and evaluation of amorphous silicon (a-Si:H) active matrix flat panel imagers (AMFPI) for bio-medical applications. Here, two hybrid active pixel sensor (H-APS) designs are introduced that improve the dynamic range while maintaining the desirable attributes of high speed and low noise readout. Also presented is a systematic approach for noise analysis of thin film transistors (TFT) and pixel circuits in which circuit analysis techniques and TFT noise models are combined to evaluate circuit noise performance. We also explore different options of system integration and present measurement results of a high fill-factor (HFF) array with segmented photodiode.
39

Amorphous Silicon Based Large Area Detector for Protein Crystallography

Sultana, Afrin January 2009 (has links)
Proteins are commonly found molecules in biological systems: our fingernails, hair, skin, blood, muscle, and eyes are all made of protein. Many diseases simply arise because a protein is not folded properly. Therefore, knowledge of protein structure is considered a prerequisite to understanding protein function and, by extension, a cornerstone for drug design and for the development of therapeutic agents. Protein crystallography is a tool that allows structural biologists to discern protein structures to the highest degree of detail possible in three dimensions. The recording of x-ray diffraction data from the protein crystal is a central part of protein crystallography. As such, an important challenge in protein crystallography research is to design x-ray detectors to accurately determine the structures of proteins. This research presents the design and evaluation of a solid-state large area at panel detector for protein crystallography based on an amorphous selenium (a-Se) x-ray sensitive photoconductor operating in avalanche mode integrated with an amorphous silicon (a-Si:H) charge storage and readout pixel. The advantages of the proposed detector over the existing imaging plate (IP) and charge coupled device (CCD) detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The requirement of high dynamic range is crucial for protein crystallography since both weak and strong diffraction spots need to be imaged. The main disadvantage of a-Si:H thin film transistor (TFT) array is its high electronic noise which prohibits quantum noise limited operation for the weak diffraction spots. To overcome the problem, the x-ray to charge conversion gain of a-Se is increased by using its internal avalanche multiplication gain. Since the detector can be made approximately the same size as the diffraction pattern, it eliminates the need for image demagnification. The readout time of the detector is usually within the ms range, so it is appropriate for crystallographic application. The optimal detector parameters (such as, detector size, pixel size, thickness of a-Se layer), and operating parameters (such as, electric field across the a-Se layer) are determined based on the requirements for protein crystallography. A complete model of detective quantum efficiency (DQE) of the detector is developed to predict and optimize the performance of the detector. The performance of the detector is evaluated in terms of readout time (< 1 s), dynamic range (~10^5), and sensitivity (~ 1 x-ray photon), thus validating the detector's efficacy for protein crystallography. The design of an in-house a-Si:H TFT pixel array for integration with an avalanche a-Se layer is detailed. Results obtained using single pixel are promising and highlight the feasibility of a-Si:H pixels coupled with avalanche a-Se layer for protein crystallography application.
40

Analysis of the Deep Sub-Micron a-Si:H Thin Film Transistors

Fathololoumi, Saeed January 2005 (has links)
The recent developments of high resolution flat panel imagers have prompted interests in fabricating smaller on-pixel transistors to obtain higher fill factor and faster speed. This thesis presents fabrication and modeling of short channel amorphous silicon (a-Si:H) vertical thin film transistors (VTFT). <br /><br /> A variety of a-Si:H VTFTs with different channel lengths, from 100 nm to 1 &mu;m, are successfully fabricated using the discussed processing steps. Different structural and electrical characteristics of the fabricated device are measured. The results of I-V and C-V characteristics are comprehensively discussed. The 100 nm channel length transistor performance is diverged from regular long channel TFT characteristics, as the short channel effects become dominant in the device, giving rise to necessity of having a physical model to explain such effects. <br /><br /> An above threshold model for a-Si:H VTFT current characteristics is extracted. The transport mechanisms are explained and simulated for amorphous silicon material to be used in the device model. The final model shows good agreement with experimental results. However, we used numerical simulation, run in Medici, to further verify the model validity. Simulation allows us to vary different device and material parameters in order to optimize fabrication process for VTFT. The capacitance behavior of the device is extensively studied alongside with a TFT breakdown discussion.

Page generated in 0.0782 seconds