• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 502
  • 68
  • 68
  • 41
  • 31
  • 20
  • 16
  • 11
  • 10
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 923
  • 446
  • 391
  • 302
  • 265
  • 161
  • 114
  • 86
  • 78
  • 73
  • 72
  • 68
  • 66
  • 64
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Effect of de novo peptide properties on self-assembling large amyloid fibers

Rippner, Caitlin Marie Weigand 14 May 2013 (has links)
Amyloid aggregation involves the spontaneous formation of fibers from misfolded proteins. This process requires low energy input, results in robust fibers, and is thus of interest from a materials manufacturing perspective. The effect of glutamine content and hydrophobicity of template peptides on amyloid aggregation of a template-peptide system involving myoglobin was studied at near-physiological conditions by Fourier transform infrared spectroscopy, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. Hydrophobic interactions were found to be important for controlled hierarchical fiber growth via a cooperative mechanism, with the largest effect in myoglobin mixtures. Hydrophobic packing increased for most systems as aggregation progressed. The largest changes in structure occurred upon drying. When myoglobin was present with the highest glutamine-containing template (P7), the high glutamine peptide was not effective as a template, since it appeared to prefer self-catalysis. A low level of glutamine in some unordered templates was insufficient for amyloid development. However, templating was more important in glutamine-free templates mixed with myoglobin, which formed fibers with a surprisingly high elastic modulus. This may have been due to template patterning. Nanoindentation results confirmed that glutamine blocks were not necessary for strong intermolecular interactions and cooperative fibril formation. / Master of Science
322

Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice / APPトランスジェニックマウスにおいて、運動は食事改善よりも高脂肪食によるAβの沈着および学習記憶の悪化を改善する

Maesako, Masato 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第18194号 / 人健博第11号 / 新制||人健||1(附属図書館) / 31052 / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 細田 公則, 教授 高桑 徹也, 教授 任 和子 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
323

Novel physicochemical properties of polyubiquitin chains / ポリユビキチン鎖の新規物理化学的性質

Morimoto, Daichi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19004号 / 工博第4046号 / 新制||工||1623(附属図書館) / 31955 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 渡辺 宏, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
324

Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy / タキシフォリンはアミロイドβのオリゴマー形成を阻害し、脳アミロイド血管症モデルマウスの脳血流障害と視空間記憶障害を回復させる

Saito, Satoshi 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20619号 / 医博第4268号 / 新制||医||1023(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 宮本 享, 教授 渡邉 大, 教授 松原 和夫 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
325

Nanoparticle-induced Changes in Insulin Fibrillation Behavior

Khosravi, Zahra January 2020 (has links)
No description available.
326

The effects of a human b-amyloid gene on learning and memory in transgenic mice /

Tirado Santiago, Giovanni January 1994 (has links)
No description available.
327

MicroRNA Regulation of Key Proteins Involved in Alzheimer's Disease Pathogenesis

Wang, Ruizhi 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer’s disease (AD) is a neurodegenerative disease histopathologically characterized by the coexistence of amyloid plaques and neurofibrillary tangles, mainly consisting of amyloid β peptides hyperphosphorylated tau proteins, respectively. Multiple proteins and pathways are involved in the pathogenesis of AD, including Aβ precursor protein (APP), β-site APP-cleaving enzyme (BACE1), neprilysin, endothelin converting enzyme (ECE), repressor element-1 silencing transcription factor (REST), microtubule-associated protein tau, glycogen synthase kinase, and pro-inflammatory cytokines. However, how these proteins and pathways are dysregulated and converge in AD pathogenesis remains unclear. Genetic, epigenetic and environmental factors play important roles in disease progression. MicroRNAs (miRNAs), a group of small noncoding RNAs, are important epigenetic regulators that participate in AD development. We have identified three miRNAs capable of targeting several proteins in different AD-related pathways: miR-181-5p, miR-153-3p and miR-101-3p. We tested miR-181 activity with recombinant reporter gene- MME 3’-UTR constructs. All four miR-181-5p (miR-181a, miR-181b, miR-181c and miR-181d) sequences downregulated the reporter signal. Human differentiated neural cells were transfected with miR-181d-5p mimics. miR-181d-5p treatment significantly reduced MME mRNA levels, protein levels and enzyme activity. In addition, miR-181d-5p increased tau and phosphorylated tau levels proportionally. We further demonstrate that miR-153-3p reduced REST 3’-UTR activities, mRNA and protein levels in multiple human cell lines. Moreover, we show that miR-153-3p, by knocking down REST protein, induces apoptosis in HeLa cells but not differentiated neural cells. In addition, miR-153-3p regulates neuronal differentiation in neuronal stem cells, potentially via REST knockdown. We further found that miR-153 levels were correlated with a reduced likelihood of developing AD. Last, we demonstrated that miR-101-3p reduced ECE1 and GSK3β protein levels in multiple cell lines. miR-101-3p increased REST and pro-inflammatory cytokine secretion in microglia cells. In sum, we tested the hypothesis that miRNAs can serve as the master regulator of AD pathogenesis. / 2024-07-01
328

Self-assembly Of Amyloid Aggregates Simulated With Molecular Dynamics

Berhanu, Workalemahu Mikre 01 January 2011 (has links)
Amyloids are highly ordered cross-β sheet aggregates that are associated with many diseases such as Alzheimer‟s, type II diabetes and prion diseases. Recently a progress has been made in structure elucidation, environmental effects and thermodynamic properties of amyloid aggregates. However, detailed understanding of how mutation, packing polymorphism and small organic molecules influence amyloid structure and dynamics is still lacking. Atomistic modeling of these phenomena with molecular dynamics (MD) simulations holds a great promise to bridge this gap. This Thesis describes the results of MD simulations, which provide insight into the effects of mutation, packing polymorphism and molecular inhibitors on amyloid peptides aggregation. Chapter 1 discusses the structure of amyloid peptides, diseases associated with amyloid aggregation, mechanism of aggregation and strategies to treat amyloid diseases. Chapter 2 describes the basic principles of molecular dynamic simulation and methods of trajectory analysis used in the Thesis. Chapter 3 presents the results of the study of several all-atom molecular dynamics simulations with explicit solvent, starting from the crystalline fragments of two to ten monomers each. Three different hexapeptides and their analogs produced with single glycine replacement were investigated to study the structural stability, aggregation behavior and thermodynamics of the amyloid oligomers. Chapter 4 presents multiple molecular dynamics (MD) simulation of a pair polymorphic form of five short segments of amyloid peptide. Chapter 5 describes MD study of single-layer oligomers of the full-length insulin with a goal to identify the structural elements that are important for insulin amyloid stability, and to suggest single glycine mutants that may improve formulation. Chapter 6 presents the investigation of the mechanism of the interaction of polyphenols molecules with the protofibrils formed by an amyloidogenic hexapeptide fragment (VQIVYK) of Tau peptide by molecular dynamics iii simulations in explicit solvent. We analyzed the trajectories of the large (7×4) aggregate with and without the polyphenols. Our MD simulations for both the short and full length amyloids revealed adding strands enhances the internal stability of wildtype aggregates. The degree of structural similarity between the oligomers in simulation and the fibril models constructed based on experimental data may explain why adding oligomers shortens the experimentally observed nucleation lag phase of amyloid aggregation. The MM-PBSA free energy calculation revealed nonpolar components of the free energy is more favorable while electrostatic solvation is unfavorable for the sheet to sheet interaction. This explains the acceleration of aggregation by adding nonpolar co-solvents (methanol, trifluoroethanol, and hexafluoroisopropanol). Free energy decomposition shows residues situated at the interface were found to make favorable contribution to the peptide -peptide association. The results from the simulations might provide both the valuable insight for amyloid aggregation as well as assist in inhibitor design efforts. First, the simulation of the single glycine mutants at the steric zipper of the short segments of various pathological peptides indicates the intersheet steric zipper is important for amyloid stability. Mutation of the side chains at the dry steric zipper disrupts the sheet to sheet packing, making the aggregation unstable. Thus, designing new peptidomimetic inhibitors able to prevent the fibril formation based on the steric zipper motif of the oligomers, similar to the ones examined in this study may become a viable therapeutic strategy. The various steric zipper microcrystal structures of short amyloid segments could be used as a template to design aggregation inhibitor that can block growth of the aggregates. Modification of the steric zipper structure (structure based design) with a single amino acid changes, shuffling the sequences, N- methylation of peptide amide bonds to suppress hydrogen iv bonding ability of NH groups or replacement with D amino acid sequence that interact with the parent steric zipper could be used in computational search for the new inhibitors. Second, the polyphenols were found to interact with performed oligomer through hydrogen bonding and induce conformational change creating an altered aggregate. The conformational change disrupts the intermolecular amyloid contact remodeling the amyloid aggregate. The recently reported microcrystal structure of short segments of amyloid peptides with small organic molecules could serve as a pharamcophore for virtual screening of aggregation inhibitor using combined docking and MD simulation with possible enhancement of lead enrichment. Finally, our MD simulation of short segments of amyloids with steric zipper polymorphism showed the stability depends on both sequence and packing arrangements. The hydrophilic polar GNNQQNY and NNQNTF with interface containing large polar and/or aromatic side chains (Q/N) are more stable than steric zipper interfaces made of small or hydrophobic residues (SSTNVG, VQIVYK, and MVGGVV). The larger sheet to sheet interface of the dry steric zipper through polar Q/N rich side chains was found to holds the sheets together better than non Q/N rich short amyloid segments. The packing polymorphism could influence the structure based design of aggregation inhibitor and a combination of different aggregation inhibitors might be required to bind to various morphologic forms of the amyloid peptides.
329

Structural Characterization of the Pre-Amyloid Oligomers of β-2-Microglobulin Using Covalent Labeling and Mass Spectrometry

Mendoza, Vanessa Leah Castillo 01 September 2010 (has links)
The initial steps involved in the assembly of normally soluble proteins into amyloid fibrils remain unclear, yet over 20 human diseases are associated with proteins that aggregate in this manner. Protein surface modification is a potential means of mapping the interaction sites in early oligomers that precede amyloid formation. This dissertation focuses on the use of covalent labeling combined with mass spectrometry to elucidate the structural features of Cu(II)-induced β-2-microglobulin (β2m) amyloid formation. An improved covalent modification and MS-based approach for protein surface mapping has been developed to address the need for a reliable approach that ensures protein structural integrity during labeling experiments and provides readily detectable modifications. This approach involves measuring the kinetics of the modification reactions and allows any local perturbations caused by the covalent label to be readily identified and avoided. This MS-based method has been used to study human β2m, a monomeric protein that has been shown to aggregate into amyloid fibrils in dialysis patients leading to dialysis-related amyloidosis. Under conditions that lead to β2m amyloid formation, reactions of β2m with three complementary covalent labels have been used to identify the Cu(II) binding site, metal-induced conformational changes, and the oligomeric interfaces. Results confirm that Cu(II) binds to His31 and the N-terminal amine. Binding to these residues causes several structural changes in the N-terminal region and ABED β-sheet which likely enables formation of oligomeric intermediates. The covalent labeling data indicate that the pre-amyloid β2m dimer has an interface that involves the antiparallel arrangement of ABED sheets from two monomers. Moreover, our covalent labeling data allowed us to develop a model for the tetramer in which the interface is mediated by interactions between D strands of one dimer unit and the G strands of another dimer unit. Lastly, the selective covalent modification approach has been used to delineate the structural changes in β2m after interaction with Cu(II), Ni(II), and Zn(II) and their effect on its aggregation. Our covalent labeling data indicates that the unique effect of Cu(II) appears to be caused by the site at which the metal binds the protein and the conformational changes it induces.
330

Impact of PLCG2 Alzheimer's Disease Risk and Protective Variants on Microglial Biology and Disease Pathogenesis

Tsai, Andy Po-Yi 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer’s disease (AD) is typified by a robust microglial-mediated immune response. Genetic studies have demonstrated that many genes that alter AD risk are involved in the innate immune response and are primarily expressed in microglia. Among these genes is phospholipase C gamma 2 (PLCG2), a critical element for various immune receptors and a key regulatory hub for immune signaling. PLCG2 genetic variants are associated with altered AD risk. The primary objective of this thesis was to determine the role of PLCG2 in AD pathogenesis. We observed significant upregulation of PLCG2 expression in three brain regions of late-onset AD (LOAD) patients and a significant positive correlation of PLCG2 expression with amyloid plaque density. Furthermore, the differential gene expression analysis highlighted inflammatory response-related pathways. These results suggest that PLCG2 plays an important role in AD. We systematically investigated the impact of PLCG2 haploinsufficiency on the microglial response and amyloid pathology in the amyloidogenic 5xFAD mouse model. The results demonstrated that Plcg2 haploinsufficiency altered the phenotype of plaqueassociated microglia, suppressed cytokine levels, increased compact X34-positive plaque deposition, and downregulated the expression of microglial genes associated with immune cell activation and phagocytosis. Our study highlights the role of PLCG2 in immune responses; loss of function of PLCG2 exacerbates the amyloid pathology of AD. Genetic studies demonstrated that the hypermorphic P522R variant is protective and that the loss of function M28L variant confers an elevated risk for AD. Our results demonstrated that PLCG2 variants modulate disease pathologies through specific transcriptional programs. In the presence of amyloid pathology, the M28L risk variant impaired microglial response to plaques, suppressed cytokine release, downregulated disease-associated microglial genes, and increased plaque deposition. However, microglia harboring the P522R variant exhibit a transcriptional response endowing them with a protective immune response signature linked to their association with plaques and Aβ clearance, attenuating disease pathogenesis in an amyloidogenic mouse model of AD. Collectively, our study provides evidence that the M28L variant is associated with accelerated and exacerbated disease-related pathology, and conversely, the P522R variant appeared to attenuate disease severity and progression. / 2024-10-03

Page generated in 0.0456 seconds