• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eficiência energética e intensidade de emissões no setor de papel e celulose brasileiro / Energy efficiency and emissions intensity in the Brazilian pulp and paper sector

Fracaro, Guilherme de Paula Moreira 16 February 2012 (has links)
Made available in DSpace on 2017-07-10T15:14:44Z (GMT). No. of bitstreams: 1 Guilherme de Paula Moreira Fracaro.pdf: 1427700 bytes, checksum: f759217009e2ccbcf53a1f94eb64e5bf (MD5) Previous issue date: 2012-02-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Industrial energy efficiency has received increasing attention in many countries because of its importance in the pursuit of security of energy supply, increased competitiveness in the economy and in the mitigation of greenhouse gases emissions. This dissertation aimed to evaluate the energy consumption development of Brazilian pulp and paper industry, a sector classified and energy-intensive and with significative importance both in terms of energy and economic. Both the emissions intensity of greenhouse gases, arising from the sector energy consumption, and the developments of the energy efficiency levels were analysed, estimating the existing energy saving potentials. Through a decomposition analysis, the influences of changes in the struture, production intensity and energy efficiency levels in the increased sector energy consumption over time were evaluated. In order to contextualize the changes occurred in the country, an international comparison of the development of both the energy efficiency levels and the energy consumption decomposition of other importante producing countries: Canada, United States of America, Finland and Sweden were held. It was concluded in this study that the emissions intensity of carbon dioxide equivalent by the national industry decreased significantly between 1979 and 2010, from 1.24 to 0.31 CO2e per tonne of exported pulp and produced paper. Despite a significant increase in the energy efficiency levels, responsible for 5.5 PJ savings in electricity consumption and for 37.6 PJ savings in fuels consumptions between 1979 and 2009, it was identified a saving potential of 7.3 PJ and 105.5 PJ related to the annual consumption of electricity and fuels, respectively, in the Brazilian pulp and paper industry. Among the countries evolved in the international comparison, both Swedish and Finnish industreis were the most eficiente, followed by the Brazilian, American and Canadian, being the latter the only one where there was a reduction in the energy efficiency levels over the analysed period. Keywords: energy-efficiency; decomposition analysis; international comparison. / A eficiência energética industrial vem recebendo crescente atenção em diversos países por sua importância na busca por segurança de suprimento energético, aumento de competitividade na economia e mitigação das emissões de gases de efeito estufa. Esta dissertação teve por objetivo avaliar o desenvolvimento do consumo energético da indústria de papel e celulose no Brasil, setor classificado como energo-intensivo e com significativa importância tanto em termos energéticos quanto econômicos no país. Analisou-se o desenvolvimento da intensidade de emissões de gases de efeito estufa, decorrentes do consumo energético do setor, e os desenvolvimentos dos níveis de eficiência energética, estimando-se os potenciais de conservação de energia existentes. Através de uma análise de decomposição, avaliou-se as influências das mudanças estruturais, de intensidade de produção e dos níveis de eficiência energética no aumento do consumo de energia pelo setor ao longo do tempo. Afim de contextualizar as alterações ocorridas no país, realizou-se uma comparação internacional dos desenvolvimentos dos níveis de eficiência e da decomposição do consumo energético em outros importantes países produtores: Canadá, Finlândia, Suécia e Estados Unidos da America. Concluiu-se neste estudo foram que a intensidade das emissões de dióxido de carbono equivalente pela indústria nacional reduziu significativamente entre 1979 e 2010, de 1,24 para 0,31 tCO2e por tonelada de celulose exportada e papel produzido. Apesar de um importante aumento dos níveis de eficiência energética, responsável por uma economia de 5,5 PJ em eletricidade e 37,6 PJ em combustíveis entre 1979 e 2009, identificou-se ainda um potencial de aproximadamente 7,3 PJ e 105,5 PJ para a conservação anual de eletricidade e combustíveis, respectivamente, na indústria brasileira de celulose e papel. Entre os países envolvidos na comparação internacional, as indústrias sueca e finlandesa mostraram-se como as mais eficientes, seguidas pelas indústrias brasileira, estadunidense e canadense, sendo esta última a única onde ocorreu uma redução nos níveis de eficiência energética para o período analisado.
2

Computational study of ruthenium-nitrosyl compounds / Estudo computacional de compostos rutênio-nitrosilo

Orenha, Renato Pereira 08 May 2017 (has links)
The discovery of the chemical properties related to the physiological and pathophysiological processes of the nitric oxide molecule has advanced scientific research concerning the control of NO availability in the biological environment. Complexes involving ruthenium and other ligands, such as amine and tetraazomacrocycles, have been used as models because they display properties like stability to air oxidation, solubility in water, and low cytotoxicity against host cells. Given the peculiar properties of nitric oxide, we first conducted a computational experiment based on the molecular orbital diagram of NO (Chapter 3). Then, we performed exercises of computational quantum chemistry involving the monocation (NO+) and monoanion (NO-) of NO. These exercises were presented to students at the end of their undergraduate studies or at the beginning of their postgraduate studies. The students started the experiment by exploring the Lewis structures of NO+, NO, and NO- along with the molecular orbital diagram of NO, to obtain a correlation with different properties like bond lengths and atomic charges. Next, they compared the calculated bond lengths and vibrational frequencies with experimental results found in Internet databases, which allowed them to discuss the differences they visualized. In addition, distinct approximations helped to calculate partial atomic charges. The students verified that it is difficult to determine this parameter because it is not physically observable and does not rely on any quantum mechanical operator to determine its quantity. The dipole moment calculated for NO, 0.153 D, by using B3LYP/631+G(d,p) level is close to the most accepted experimental data. This value contrasts with a recent determination of this parameter indicating that the negative charge concentrates on the nitrogen atom. The students finished the experiment by dealing with two topics of relevant interest to computational chemistry: (i) investigation of the behavior of some properties; for instance, atomic charges and spin densities, in relation to the basis set increment, and (ii) calculation of accurate electronic energies from extrapolation of the basis set pcn, n = 2-4, to infinity. Given the relevance of the nitric oxide molecule and the important role of water as solvent in the biological environment, we undertook a computational study of the interaction of NO, NO+, and NO- with H2O: [NO.H2O], 0, [NO.H2O]+, 0+, and [NO.H2O]-, 0- (Chapter 4). The geometries optimized for these clusters indicated that the NO.H2O interaction depends on the total charge: (ON.HOH), (NO-.HOH), and (ON+.OH2). The atomic spin densities along with the frontier molecular orbitals representation demonstrated that NO goes from 0 to 0+ or 0- in the oxidation or reduction processes, respectively, and that both processes occur on the nitrogen atom. The quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and natural bond-bond polarizability (NBBP) methods helped to quantify the electronic delocalization level between NO and H2O: 0+ > 0 > 0-, to show a predominantly ionic character for the intermolecular interactions, but a primarily covalent character for the intramolecular chemical bonds. Energy analyses carried out by the natural bond orbital (NBO) and localized molecular orbital energy decomposition (LMOEDA) methods for the interaction between NO and H2O in the complexes 0, 0+, and 0- demonstrated a more favorable interaction in 0- than in 0+ and 0, as revealed by the former method. However, the latter method indicated more negative total interaction energy for 0+ in relation to 0- and 0 because of its predominantly electrostatic component. Analysis of the electrostatic potential surfaces furnished a clear and direct explanation for the relative position of the monomers. Additionally, this analysis showed that the Coulombic attraction between the water molecule and the charged complexes NO+ and NO- is larger than in the case of the complexes with NO. Accordingly, we investigated the complexes cis-[RuCl(NO)(NH3)4]+, 1; cis-[RuCl(NO)(NH3)4]2+, 2; cis-[RuCl(NO)(NH3)4]3+, 3; trans-[RuCl(NO)(NH3)4]+, 4; trans-[RuCl(NO)(NH3)4]2+, 5; trans-[RuCl(NO)(NH3)4]3+, 6; [Ru(NO)(NH3)5]+, 7; [Ru(NO)(NH3)5]2+, 8; and [Ru(NO)(NH3)5]3+, 9 to improve our understanding of the nature of Ru-NO chemical bond and of the influence of the total charge, nature, and relative position of simple ligands on NO release from these complexes (Chapter 5). According to the analysis of charges conducted by the QTAIM and NBO methods along with the molecular orbital representation, the first chemical reduction of complexes 3 and 6 to complexes 2 and 5, respectively, occurs in the pi orbital of Cl, whereas the second reduction, from complexes 2 and 5 to complexes 1 and 4, respectively, and the overall reduction process complex 9 --> complex 8 --> complex 7 takes place in the pi* orbital of NO. In addition, geometric parameters, wavenumbers related to bond stretching, and analysis of electron density by the QTAIM and NBO methods showed that the thermodynamic stability of the Ru-NO bond in complexes 1-6 increases in the first reduction (on going from total charge 3+ to 2+), but it decreases in the second reduction (on going from 2+ to 1+). For complexes 7-9, the stability of the Ru-NO bond decreases in the first reduction, but it increases in the second reduction. This is because interaction between NO and Ru is more favorable in complex 7 than interaction between NO and Ru in complex 8. For NO, the bond order decreases upon reduction of the total charge in the three classes of complexes: 1-3, 4-6, and 7-9. For the complexes containing the chlorine atom, it is possible to observe that the chloride group increases the electron density and provides a more favorable electrostatic interaction in the Ru-NO bond as compared to the complexes containing amine only. The results also indicate increased stability of the Ru-NO bond in complexes 1-3 as compared to complexes 4-6. As a result, the electrostatic interaction between Cl and NO is larger in complexes 1 and 3 as compared to complexes 4 and 6, respectively. We investigated the influence of the Effective Core Potential (ECP) in relation to the treatment involving all the electrons along the scalar relativistic effects obtained by the secondorder Douglas-Kroll-Hess (DKH2) approximation by analyzing the geometric parameters of complexes 1-9 and trans-[RuCl(NO)(NH3)4], 10. By using the ECP basis set, we determined the energies of reduction (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7, and F: 9-->8), isomerization (G: 1-->4, H: 2-->5, and I: 3-->6), and Cl negative trans influence (J: 7+Cl- --> 10+NH3, K: 8+Cl- --> 5+NH3, and L: 9+Cl- --> 6+NH3) with the computational methods: RI-MP2, RI-SCS-MP2, OO-RI-MP2, OO-R-ISCS-MP2, M06-L, M06, M06-2X, M06-HF, BP86-D3BJ, BP86, B2PLYP, LC-wPBE, and B3LYP. We adopted the CCSD(T) method as reference (Chapter 6). For the statistical analysis, we used the following parameters: minimal negative deviation, Dneg(Min); maximum positive deviation, Dpos(Max); medium absolute deviation, MAD; and rootmeansquare, RMS. In addition to these results, we used values relative to the computational model used as reference, CCSD(T)/def2TZVP, or even a comparison with the experimental results. The geometric parameters obtained with ECP were very close to the values obtained with DKH2 - we achieved MARD values of 1.4 and 0.4% for the bond lengths and angles, respectively. Besides that, the calculated data had MARD values close to 4% as compared to the X-ray experimental results for bond lengths and MARD values close to 3% for the bond angles. These results are acceptable, despite deviation intervals of (5%) - 9% for r, and (5%) - 7% for <. Concerning the reaction energies, the B2PLYP method gave the closest values in relation to those obtained by CCSD(T) in A-I, whereas B3LYP showed the best performance in the proposed chemical reactions J-L. We also studied the nature of the Ru-NO and Ru-NO2 bonds in the compound fac-[Ru(NO)Cl2(3N4,N8,N11(1-carboxypropyl)cyclam)]+ as well as its derivatives obtained upon changes in pH by the computational model B3LYP/ccpVDZ with pseudopotential ECP28MDF for ruthenium. The electronic structure was analyzed with the aid of the density overlap regions indicator (DORI), QTAIM, ELF, and NBO methods (Chapter 7). The DORI method identified a region where the electron density of Ru and NO or NO2 overlapped, which indicated the presence of the Ru-NO or Ru-NO2 chemical bond. The QTAIM and ELF methods showed that these bonds have low covalent character. Investigation of the electron density demonstrated that the number of electrons shared between Ru and NO increases on going from complex 11 to complex 12, when carboxyl group is deprotonated. However, this number decreases with increasing pH and formation of complex 13, from deprotonation of N(2), and complex 14, with conversion of Ru-NO to Ru-NO2. By using NBO, we also observed interaction between the localized d orbitals of Ru and the pi* orbital of NO or NO2. This interaction is related to the pi backdonation process, which is more favorable to the stabilization of complexes 11-14 than the interaction between the sigma NBOs of NO or NO2 with the d-sigma orbital of Ru, associated with the donation route. Successively, the second order stabilization energy involving the NBOs with symmetry increases on going from complex 11 to complex 12 due to the decreased energy difference and increased overlap between these localized orbitals. The opposite trend is observed on going from complex 12 to complexes 13 and 14, in agreement with previous results. We examined the Ru-NO bond mechanism in the complex trans-[RuCl(NO)(NH3)4]2+ (Chapter 8). Then, we obtained the geometry of this compound and the bond dissociation energy (-Delta-E) of the decompositions trans-[RuCl(NH3)4]+ + NO+, trans-[RuCl(NH3)4]2+ + NO, and trans-[RuCl(NH3)4]3+ + NO by using the computational models ZORA-BP86/TZ2P and BP86/TZ2P, to evaluate how the ZORA approximation influenced treatment of the relativistic effects. Both computational models agreed well with the geometric parameters obtained by X-ray diffraction in the literature. Nevertheless, the values of -Delta-E were significantly different, so we adopted the ZORA-BP86/TZ2P model in the subsequent discussions. The dissociation trans-[RuCl(NH3)4]+ + NO+ gave the lowest -Delta-E, which agreed with a value for the Ru-NO bond angle close to 180º and is typical of trans-[Ru(NO)L(NH3)4]n+ that are EPR silent. We used this decomposition along with the Kohn-Sham molecular orbital theory in combination with the energetic decomposition analysis to highlight some important characteristics of the Ru-NO bond mechanism. Investigation of the negative trans influence of the Cl- group on Ru-NO revealed a favorable interaction energy for the interaction between trans-[RuCl(NH3)4]+ and NO+ - in this structure, the interaction term of the pi orbital counterbalances the electrostatic repulsion and the Pauli repulsion. We also studied the Ru-NO bond in the absence of the Cl- group for trans-[Ru(NH3)4]2+ and NO+. The interaction is repulsive because electrostatic repulsion predominates in relation to the attractive contribution of the interaction of the pi orbital. We also analyzed the RuCl bond in the absence of NO+ for trans-[Ru(NH3)4]2+ and Cl. The interaction is attractive due to the considerable value of the favorable electrostatic term. Investigation of the synergism between the processes of sigma donation and pi backdonation present in Ru-NO showed that this synergism accounts for the increased stability of this bond. The pi component is essential for maintenance of this chemical bond / A descoberta das novas propriedades químicas da molécula de óxido nítrico, relacionadas principalmente a processos fisiológicos e fisiopatológicos, promoveu um avanço nas pesquisas científicas ligada ao controle da disponibilidade desta molécula em meio biológico. Sendo que compostos, que possuem especialmente rutênio e ligantes, tais como, amina e tetraazomacrocíclicos são utilizadas como modelo devido a suas propriedades como, por exemplo, estabilidade frente à oxidação promovida pelo ar, solubilidade em água e baixa citoxicidade contra células hospedeiras. Assim, devido às propriedades peculiares do óxido nítrico, foi realizado em primeiro lugar um experimento computacional baseado no diagrama de orbitais moleculares do NO e em exercícios de química quântica computacional envolvendo também seu monocátion (NO+) e monoânion (NO) (Capítulo 3). Os estudantes iniciaram este experimento explorando as estruturas de Lewis de NO+, NO e NO junto ao diagrama de orbitais moleculares do NO obtendo uma correlação com diferentes propriedades, por exemplo, comprimentos de ligação, e cargas atômicas. Em seguida, os valores dos comprimentos de ligação e frequências vibracionais calculados foram comparados com os dados experimentais encontrados em bancos de dados na internet, permitindo uma discussão a respeito das diferenças observadas. Em seguida, distintas aproximações foram utilizadas para o cálculo das cargas atômicas parciais demonstrando a dificuldade na determinação deste parâmetro, uma vez que este não é uma observável física e, consequentemente, não há um operador mecânico quântico para a obtenção desta grandeza. Além disso, o momento de dipolo calculado do NO, 0,153 D, com B3LYP/631+G(d,p), é próximo ao valor experimental, mais aceito, em contaste a uma recente determinação que indica uma carga negativa concentrada no sentido do átomo de nitrogênio. O experimento termina com dois tópicos de grande interesse para a química computacional. Onde, em primeiro lugar, foi realizada uma investigação de como propriedades, tais como, cargas e densidades de spin atômicas se comportam com o aumento do conjunto de base. E em segundo lugar, o cálculo de energias eletrônicas precisas foi possível com a extrapolação do conjunto de base pcn, n = 24, para n igual a infinito. Dada à relevância da molécula de óxido nítrico e o papel da água como solvente em meio biológico, também foi realizado o estudo computacional da interação entre NO, NO+, e NO com H2O: [NO.H2O], 0, [NO.H2O]+, 0+, e [NO.H2O], 0 (Capítulo 4). Onde, as geometrias otimizadas destes clusters indicam que a interação NO.H2O depende da carga total: (ON.HOH), (NO.HOH) e (ON+.OH2). Sendo que as densidades de spin atômicas e a forma dos orbitais moleculares indicam que a partir de 0 para 0+ ou 0 os processos de oxidação ou redução, respectivamente, ocorrem sobre o NO, ou mais especificamente sobre o átomo de nitrogênio. Logo, os métodos quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) e natural bondbond polarizability (NBBP) permitem quantificar o nível de deslocalização eletrônica entre o NO e o H2O: 0+ > 0 > 0, e mostram um caráter predominantemente iônico para as interações intermoleculares, porém, primariamente covalente para as ligações químicas intramoleculares. Destarte, a analise energética obtida junta aos métodos natural bond orbital (NBO) e localized molecular orbital energy decomposition (LMOEDA) para a interação entre NO e H2O nos complexos 0, 0+, e 0 demostra ser mais favorável em 0 do que 0+, e 0 quanto a influência mútua dos orbitais naturais de ligação, ao passo que o segundo método designa uma energia de interação total mais negativa para 0+ em relação a 0,e 0, devido ao seu componente eletrostático predominante. Para concluir, a análise das superfícies de potenciais eletrostáticos fornece uma explicação direta e clara a respeito da posição relativa dos monômeros. Em seguida, a atração de Coulomb entre a molécula de água e os compostos carregados NO+ e NO é mais favorável frente ao NO. Por conseguinte, considerando compostos capazes de controlar a disponibilidade do NO, foram investigados os seguintes complexos: cis[RuCl(NO)(NH3)4]+, 1, cis[RuCl(NO)(NH3)4]2+, 2, cis[RuCl(NO)(NH3)4]3+, 3, trans[RuCl(NO)(NH3)4]+, 4, trans[RuCl(NO)(NH3)4]2+, 5, trans[RuCl(NO)(NH3)4]3+, 6, [Ru(NO)(NH3)5]+, 7, [Ru(NO)(NH3)5]2+, 8, e [Ru(NO)(NH3)5]3+, 9, de modo estudar a natureza da ligação química RuNO sobre a influência da carga total, bem como, da natureza e posição relativa de ligantes simples (Capítulo 5). Desta forma, em primeiro lugar, a partir da analise das cargas obtidas pelos métodos QTAIM e NBO em conjunto com a representação dos orbitais moleculares, temos que a primeira redução química em 3-->2 e 6-->5 ocorre sobre o orbital do átomo de Cl, ao passo que a segunda redução em 2-->1 e 5-->4, bem como, em 9-->8-->7 é sobre o orbital * do NO. Em seguida, os parâmetros geométricos, números de onda vibracionais de estiramento, e a analise da densidade eletrônica pelos métodos QTAIM e NBO mostram que a estabilidade termodinâmica da ligação RuNO nos compostos 16 aumenta na primeira redução, a partir de 3+ para 2+, contudo, diminuem na segunda redução, a partir de 2+ para +. Para os compostos 79, a estabilidade de RuNO diminui com a primeira redução da carga total, mas, aumenta na segunda redução. Sendo que o último processo é explicado pela interação entre o NO, e o Ru ser mais favorável em 7, do que o NO e o metal em 8. Para NO, uma diminuição da ordem de ligação é visualizada com a redução da carga total nas três classes de complexos: 13, 46 e 79. Em 16, a comparação das moléculas 1 e 4 frente a 8, assim como, 2 e 5 em relação a 9 demonstra que a influência negativa do grupo cloreto relativo a contribuição do ligante amina promove uma maior densidade eletrônica e mais favorável interação eletrostática na ligação RuNO. Adicionalmente, os resultados indicam um aumento da estabilidade em RuNO para 13 comparado a 46, devido à interação eletrostática entre Cl, e NO, apesar da densidade eletrônica nesta ligação química ser maior somente em 1 e 3 frente a 4 e 6, respectivamente. A seguir, foi realizado um estudo da influência do Effective Core Potential (ECP) em relação ao tratamento envolvendo todos os elétrons junto aos chamados efeitos relativísticos escalares por meio da aproximação secondorder DouglasKrollHess (DKH2). Isto foi realizado por meio da analise dos parâmetros geométricos dos complexos metálicos: 19 e trans[RuCl(NO)(NH3)4], 10. A partir das geometrias otimizadas com o conjunto de base com ECP, também foram avaliadas as energias das reações químicas de redução (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7 e F: 9-->8), isomerização (G: 1-->4, H: 2-->5 e I: 3-->6), e influência trans negativa do Cl (J: 7+Cl --> 10+NH3, K: 8+Cl --> 5+NH3 e L: 9+Cl --> 6+NH3) junto aos seguintes métodos computacionais: RIMP2, RISCSMP2, OORIMP2, OORISCSMP2, M06L, M06, M062X, M06HF, BP86D3BJ, BP86, B2PLYP, LCwPBE, e B3LYP. Sendo que o método CCSD(T) foi adotado como referência (Capítulo 6). Para a análise estatística foram utilizados os seguintes parâmetros: desvio negativo mínimo, Dneg(Mín), desvio positivo máximo, Dpos(Máx), desvio absoluto médio, DAM, e raiz quadrada do erro quadrático médio, RQEQM. Além destes parâmetros, foram empregados também valores relativos ao modelo computacional adotado como referência, CCSD(T)/def2TZVP, ou mesmo frente a resultados experimentais. Agora, os parâmetros geométricos obtidos com ECP frente à DKH2 apresentam valores próximos como pode ser destacado pelos valores do desvio absoluto médio relativo, DAMR, de 1,4 e 0,4% para os comprimentos e ângulos de ligação, respectivamente. Em adição, os dados calculados frente aos resultados experimentais de raiosX apresentam pequenos valores de DAMR, próximos a 4% para os comprimentos de ligação, e 3% para os ângulos de ligação, apesar do intervalo de desvios serem de (5%) 9% para r, e (5%) 7% para <. Para as energias das reações químicas propostas, o método B2PLYP apresentou resultados mais próximos ao obtido pelo CCSD(T) para AI, enquanto que o método B3LYP apresentou as energias mais próximas às obtidas com o método de referência para JL. Também foi estudada a natureza das ligações RuNO e RuNO2 no composto fac[Ru(NO)Cl2(3N4,N8,N11(1carboxipropil)cyclam)]Cl H2O ((1carboxipropil)cyclam) = 3(ácido 1,4,8,11tetraazociclotetradecan1il)propiônico), e em seus derivados junto as modificações do pH, por meio do modelo computacional B3LYP/ccpVDZ com pseudopotencial relativístico ECP28MDF para o Ru. Onde a analise da estrutura eletrônica foi realizada através dos métodos density overlap regions indicator (DORI), QTAIM, ELF e NBO (Capítulo 7). O método DORI permitiu se identificar uma região de recobrimento de densidade eletrônica entre o Ru e NO ou NO2 indicando a presença das ligações químicas RuNO e RuNO2. Os métodos QTAIM e ELF mostraram que estas ligações possuem um baixo caráter covalente. A analise da densidade eletrônica mostrou que o numero de elétrons compartilhados entre Ru e o NO aumenta a partir de 11 para 12, com a desprotonação do grupo carboxílico, porém, diminui com o aumento de pH e formação de 13, a partir da desprotonação de N(2), e 14, com a conversão da ligação RuNO para RuNO2. O método NBO também possibilitou determinar a interação entre os orbitais localizados d do Ru com * do NO ou NO2, relacionada ao processo de retrodoação , como mais favorável para a estabilização dos compostos 1114 frente à interação entre os NBOs do NO ou NO2 com d do Ru, pautada ao processo de doação . Sendo que a energia de estabilização de segunda ordem envolvendo os NBOs de simetria aumenta em 11-->12, devido à diminuição da diferença de energia e o aumento do recobrimento entre estes orbitais localizados. Entretanto, foi observada uma tendência contrária para 12-->13-->14, concordando com os resultados prévios. O mecanismo da ligação RuNO foi analisado a partir do complexo trans[RuCl(NO)(NH3)4]2+ (Capítulo 8). A geometria deste composto e a energia de dissociação de ligação (E) para as decomposições: trans[RuCl(NH3)4]+ + NO+, trans[RuCl(NH3)4]2+ + NO, e trans[RuCl(NH3)4]3+ + NO, foram obtidas junto aos modelos computacionais: ZORABP86/TZ2P e BP86/TZ2P, com o objetivo da avaliar a influência da aproximação ZORA no tratamento dos efeitos relativísticos. Os resultados mostraram que ambos os modelos computacionais apresentam uma boa concordância com os parâmetros geométricos obtidos por difração de raiosX que foram encontrados na literatura. Entretanto, os valores de E apresentaram uma diferença mais acentuada, e o modelo ZORABP86/TZ2P foi adotado nas seções seguintes deste estudo. Outro ponto é que a menor E foi obtida para trans[RuCl(NH3)4]+ + NO+, concordando com o ângulo de ligação RuNO próximo a 180º típico de compostos trans[Ru(NO)L(NH3)4]n+ que não apresentam sinais de EPR. Sendo assim, esta decomposição foi utilizada junto à teoria do orbital molecular de KohnSham em combinação com analise de decomposição energética para destacar algumas características do mecanismo da ligação RuNO. Assim sendo, na ligação RuNO sobre a influência trans negativa do Cl, estudada por meio da interação entre trans[RuCl(NH3)4]+ e NO+, temos uma energia de interação favorável porque, nesta estrutura, o termo de interação orbital contrabalança a repulsão eletrostática e a repulsão de Pauli. Por outro lado, a ligação RuNO na ausência do grupo Cl foi estudada através da interação entre trans[Ru(NH3)4]2+ e NO+, demostrando ser repulsiva devido a predominância da repulsão eletrostática frente a contribuição atrativa da interação orbital . Agora, a ligação RuCl na ausência de NO+, analisada a partir da interação entre trans[Ru(NH3)4]2+ e Cl, é atrativa devido ao considerável valor do termo eletrostático favorável. Ainda, o estudo do sinergismo entre os processos de doação e retrodoação presentes em RuNO mostrou que este é responsável por aumentar a estabilidade desta ligação. Porém, a retrodoação demonstrou não ser somente a mais importante, mas, também fundamental para a manutenção desta ligação química
3

Computational study of ruthenium-nitrosyl compounds / Estudo computacional de compostos rutênio-nitrosilo

Renato Pereira Orenha 08 May 2017 (has links)
The discovery of the chemical properties related to the physiological and pathophysiological processes of the nitric oxide molecule has advanced scientific research concerning the control of NO availability in the biological environment. Complexes involving ruthenium and other ligands, such as amine and tetraazomacrocycles, have been used as models because they display properties like stability to air oxidation, solubility in water, and low cytotoxicity against host cells. Given the peculiar properties of nitric oxide, we first conducted a computational experiment based on the molecular orbital diagram of NO (Chapter 3). Then, we performed exercises of computational quantum chemistry involving the monocation (NO+) and monoanion (NO-) of NO. These exercises were presented to students at the end of their undergraduate studies or at the beginning of their postgraduate studies. The students started the experiment by exploring the Lewis structures of NO+, NO, and NO- along with the molecular orbital diagram of NO, to obtain a correlation with different properties like bond lengths and atomic charges. Next, they compared the calculated bond lengths and vibrational frequencies with experimental results found in Internet databases, which allowed them to discuss the differences they visualized. In addition, distinct approximations helped to calculate partial atomic charges. The students verified that it is difficult to determine this parameter because it is not physically observable and does not rely on any quantum mechanical operator to determine its quantity. The dipole moment calculated for NO, 0.153 D, by using B3LYP/631+G(d,p) level is close to the most accepted experimental data. This value contrasts with a recent determination of this parameter indicating that the negative charge concentrates on the nitrogen atom. The students finished the experiment by dealing with two topics of relevant interest to computational chemistry: (i) investigation of the behavior of some properties; for instance, atomic charges and spin densities, in relation to the basis set increment, and (ii) calculation of accurate electronic energies from extrapolation of the basis set pcn, n = 2-4, to infinity. Given the relevance of the nitric oxide molecule and the important role of water as solvent in the biological environment, we undertook a computational study of the interaction of NO, NO+, and NO- with H2O: [NO.H2O], 0, [NO.H2O]+, 0+, and [NO.H2O]-, 0- (Chapter 4). The geometries optimized for these clusters indicated that the NO.H2O interaction depends on the total charge: (ON.HOH), (NO-.HOH), and (ON+.OH2). The atomic spin densities along with the frontier molecular orbitals representation demonstrated that NO goes from 0 to 0+ or 0- in the oxidation or reduction processes, respectively, and that both processes occur on the nitrogen atom. The quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and natural bond-bond polarizability (NBBP) methods helped to quantify the electronic delocalization level between NO and H2O: 0+ > 0 > 0-, to show a predominantly ionic character for the intermolecular interactions, but a primarily covalent character for the intramolecular chemical bonds. Energy analyses carried out by the natural bond orbital (NBO) and localized molecular orbital energy decomposition (LMOEDA) methods for the interaction between NO and H2O in the complexes 0, 0+, and 0- demonstrated a more favorable interaction in 0- than in 0+ and 0, as revealed by the former method. However, the latter method indicated more negative total interaction energy for 0+ in relation to 0- and 0 because of its predominantly electrostatic component. Analysis of the electrostatic potential surfaces furnished a clear and direct explanation for the relative position of the monomers. Additionally, this analysis showed that the Coulombic attraction between the water molecule and the charged complexes NO+ and NO- is larger than in the case of the complexes with NO. Accordingly, we investigated the complexes cis-[RuCl(NO)(NH3)4]+, 1; cis-[RuCl(NO)(NH3)4]2+, 2; cis-[RuCl(NO)(NH3)4]3+, 3; trans-[RuCl(NO)(NH3)4]+, 4; trans-[RuCl(NO)(NH3)4]2+, 5; trans-[RuCl(NO)(NH3)4]3+, 6; [Ru(NO)(NH3)5]+, 7; [Ru(NO)(NH3)5]2+, 8; and [Ru(NO)(NH3)5]3+, 9 to improve our understanding of the nature of Ru-NO chemical bond and of the influence of the total charge, nature, and relative position of simple ligands on NO release from these complexes (Chapter 5). According to the analysis of charges conducted by the QTAIM and NBO methods along with the molecular orbital representation, the first chemical reduction of complexes 3 and 6 to complexes 2 and 5, respectively, occurs in the pi orbital of Cl, whereas the second reduction, from complexes 2 and 5 to complexes 1 and 4, respectively, and the overall reduction process complex 9 --> complex 8 --> complex 7 takes place in the pi* orbital of NO. In addition, geometric parameters, wavenumbers related to bond stretching, and analysis of electron density by the QTAIM and NBO methods showed that the thermodynamic stability of the Ru-NO bond in complexes 1-6 increases in the first reduction (on going from total charge 3+ to 2+), but it decreases in the second reduction (on going from 2+ to 1+). For complexes 7-9, the stability of the Ru-NO bond decreases in the first reduction, but it increases in the second reduction. This is because interaction between NO and Ru is more favorable in complex 7 than interaction between NO and Ru in complex 8. For NO, the bond order decreases upon reduction of the total charge in the three classes of complexes: 1-3, 4-6, and 7-9. For the complexes containing the chlorine atom, it is possible to observe that the chloride group increases the electron density and provides a more favorable electrostatic interaction in the Ru-NO bond as compared to the complexes containing amine only. The results also indicate increased stability of the Ru-NO bond in complexes 1-3 as compared to complexes 4-6. As a result, the electrostatic interaction between Cl and NO is larger in complexes 1 and 3 as compared to complexes 4 and 6, respectively. We investigated the influence of the Effective Core Potential (ECP) in relation to the treatment involving all the electrons along the scalar relativistic effects obtained by the secondorder Douglas-Kroll-Hess (DKH2) approximation by analyzing the geometric parameters of complexes 1-9 and trans-[RuCl(NO)(NH3)4], 10. By using the ECP basis set, we determined the energies of reduction (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7, and F: 9-->8), isomerization (G: 1-->4, H: 2-->5, and I: 3-->6), and Cl negative trans influence (J: 7+Cl- --> 10+NH3, K: 8+Cl- --> 5+NH3, and L: 9+Cl- --> 6+NH3) with the computational methods: RI-MP2, RI-SCS-MP2, OO-RI-MP2, OO-R-ISCS-MP2, M06-L, M06, M06-2X, M06-HF, BP86-D3BJ, BP86, B2PLYP, LC-wPBE, and B3LYP. We adopted the CCSD(T) method as reference (Chapter 6). For the statistical analysis, we used the following parameters: minimal negative deviation, Dneg(Min); maximum positive deviation, Dpos(Max); medium absolute deviation, MAD; and rootmeansquare, RMS. In addition to these results, we used values relative to the computational model used as reference, CCSD(T)/def2TZVP, or even a comparison with the experimental results. The geometric parameters obtained with ECP were very close to the values obtained with DKH2 - we achieved MARD values of 1.4 and 0.4% for the bond lengths and angles, respectively. Besides that, the calculated data had MARD values close to 4% as compared to the X-ray experimental results for bond lengths and MARD values close to 3% for the bond angles. These results are acceptable, despite deviation intervals of (5%) - 9% for r, and (5%) - 7% for <. Concerning the reaction energies, the B2PLYP method gave the closest values in relation to those obtained by CCSD(T) in A-I, whereas B3LYP showed the best performance in the proposed chemical reactions J-L. We also studied the nature of the Ru-NO and Ru-NO2 bonds in the compound fac-[Ru(NO)Cl2(3N4,N8,N11(1-carboxypropyl)cyclam)]+ as well as its derivatives obtained upon changes in pH by the computational model B3LYP/ccpVDZ with pseudopotential ECP28MDF for ruthenium. The electronic structure was analyzed with the aid of the density overlap regions indicator (DORI), QTAIM, ELF, and NBO methods (Chapter 7). The DORI method identified a region where the electron density of Ru and NO or NO2 overlapped, which indicated the presence of the Ru-NO or Ru-NO2 chemical bond. The QTAIM and ELF methods showed that these bonds have low covalent character. Investigation of the electron density demonstrated that the number of electrons shared between Ru and NO increases on going from complex 11 to complex 12, when carboxyl group is deprotonated. However, this number decreases with increasing pH and formation of complex 13, from deprotonation of N(2), and complex 14, with conversion of Ru-NO to Ru-NO2. By using NBO, we also observed interaction between the localized d orbitals of Ru and the pi* orbital of NO or NO2. This interaction is related to the pi backdonation process, which is more favorable to the stabilization of complexes 11-14 than the interaction between the sigma NBOs of NO or NO2 with the d-sigma orbital of Ru, associated with the donation route. Successively, the second order stabilization energy involving the NBOs with symmetry increases on going from complex 11 to complex 12 due to the decreased energy difference and increased overlap between these localized orbitals. The opposite trend is observed on going from complex 12 to complexes 13 and 14, in agreement with previous results. We examined the Ru-NO bond mechanism in the complex trans-[RuCl(NO)(NH3)4]2+ (Chapter 8). Then, we obtained the geometry of this compound and the bond dissociation energy (-Delta-E) of the decompositions trans-[RuCl(NH3)4]+ + NO+, trans-[RuCl(NH3)4]2+ + NO, and trans-[RuCl(NH3)4]3+ + NO by using the computational models ZORA-BP86/TZ2P and BP86/TZ2P, to evaluate how the ZORA approximation influenced treatment of the relativistic effects. Both computational models agreed well with the geometric parameters obtained by X-ray diffraction in the literature. Nevertheless, the values of -Delta-E were significantly different, so we adopted the ZORA-BP86/TZ2P model in the subsequent discussions. The dissociation trans-[RuCl(NH3)4]+ + NO+ gave the lowest -Delta-E, which agreed with a value for the Ru-NO bond angle close to 180º and is typical of trans-[Ru(NO)L(NH3)4]n+ that are EPR silent. We used this decomposition along with the Kohn-Sham molecular orbital theory in combination with the energetic decomposition analysis to highlight some important characteristics of the Ru-NO bond mechanism. Investigation of the negative trans influence of the Cl- group on Ru-NO revealed a favorable interaction energy for the interaction between trans-[RuCl(NH3)4]+ and NO+ - in this structure, the interaction term of the pi orbital counterbalances the electrostatic repulsion and the Pauli repulsion. We also studied the Ru-NO bond in the absence of the Cl- group for trans-[Ru(NH3)4]2+ and NO+. The interaction is repulsive because electrostatic repulsion predominates in relation to the attractive contribution of the interaction of the pi orbital. We also analyzed the RuCl bond in the absence of NO+ for trans-[Ru(NH3)4]2+ and Cl. The interaction is attractive due to the considerable value of the favorable electrostatic term. Investigation of the synergism between the processes of sigma donation and pi backdonation present in Ru-NO showed that this synergism accounts for the increased stability of this bond. The pi component is essential for maintenance of this chemical bond / A descoberta das novas propriedades químicas da molécula de óxido nítrico, relacionadas principalmente a processos fisiológicos e fisiopatológicos, promoveu um avanço nas pesquisas científicas ligada ao controle da disponibilidade desta molécula em meio biológico. Sendo que compostos, que possuem especialmente rutênio e ligantes, tais como, amina e tetraazomacrocíclicos são utilizadas como modelo devido a suas propriedades como, por exemplo, estabilidade frente à oxidação promovida pelo ar, solubilidade em água e baixa citoxicidade contra células hospedeiras. Assim, devido às propriedades peculiares do óxido nítrico, foi realizado em primeiro lugar um experimento computacional baseado no diagrama de orbitais moleculares do NO e em exercícios de química quântica computacional envolvendo também seu monocátion (NO+) e monoânion (NO) (Capítulo 3). Os estudantes iniciaram este experimento explorando as estruturas de Lewis de NO+, NO e NO junto ao diagrama de orbitais moleculares do NO obtendo uma correlação com diferentes propriedades, por exemplo, comprimentos de ligação, e cargas atômicas. Em seguida, os valores dos comprimentos de ligação e frequências vibracionais calculados foram comparados com os dados experimentais encontrados em bancos de dados na internet, permitindo uma discussão a respeito das diferenças observadas. Em seguida, distintas aproximações foram utilizadas para o cálculo das cargas atômicas parciais demonstrando a dificuldade na determinação deste parâmetro, uma vez que este não é uma observável física e, consequentemente, não há um operador mecânico quântico para a obtenção desta grandeza. Além disso, o momento de dipolo calculado do NO, 0,153 D, com B3LYP/631+G(d,p), é próximo ao valor experimental, mais aceito, em contaste a uma recente determinação que indica uma carga negativa concentrada no sentido do átomo de nitrogênio. O experimento termina com dois tópicos de grande interesse para a química computacional. Onde, em primeiro lugar, foi realizada uma investigação de como propriedades, tais como, cargas e densidades de spin atômicas se comportam com o aumento do conjunto de base. E em segundo lugar, o cálculo de energias eletrônicas precisas foi possível com a extrapolação do conjunto de base pcn, n = 24, para n igual a infinito. Dada à relevância da molécula de óxido nítrico e o papel da água como solvente em meio biológico, também foi realizado o estudo computacional da interação entre NO, NO+, e NO com H2O: [NO.H2O], 0, [NO.H2O]+, 0+, e [NO.H2O], 0 (Capítulo 4). Onde, as geometrias otimizadas destes clusters indicam que a interação NO.H2O depende da carga total: (ON.HOH), (NO.HOH) e (ON+.OH2). Sendo que as densidades de spin atômicas e a forma dos orbitais moleculares indicam que a partir de 0 para 0+ ou 0 os processos de oxidação ou redução, respectivamente, ocorrem sobre o NO, ou mais especificamente sobre o átomo de nitrogênio. Logo, os métodos quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) e natural bondbond polarizability (NBBP) permitem quantificar o nível de deslocalização eletrônica entre o NO e o H2O: 0+ > 0 > 0, e mostram um caráter predominantemente iônico para as interações intermoleculares, porém, primariamente covalente para as ligações químicas intramoleculares. Destarte, a analise energética obtida junta aos métodos natural bond orbital (NBO) e localized molecular orbital energy decomposition (LMOEDA) para a interação entre NO e H2O nos complexos 0, 0+, e 0 demostra ser mais favorável em 0 do que 0+, e 0 quanto a influência mútua dos orbitais naturais de ligação, ao passo que o segundo método designa uma energia de interação total mais negativa para 0+ em relação a 0,e 0, devido ao seu componente eletrostático predominante. Para concluir, a análise das superfícies de potenciais eletrostáticos fornece uma explicação direta e clara a respeito da posição relativa dos monômeros. Em seguida, a atração de Coulomb entre a molécula de água e os compostos carregados NO+ e NO é mais favorável frente ao NO. Por conseguinte, considerando compostos capazes de controlar a disponibilidade do NO, foram investigados os seguintes complexos: cis[RuCl(NO)(NH3)4]+, 1, cis[RuCl(NO)(NH3)4]2+, 2, cis[RuCl(NO)(NH3)4]3+, 3, trans[RuCl(NO)(NH3)4]+, 4, trans[RuCl(NO)(NH3)4]2+, 5, trans[RuCl(NO)(NH3)4]3+, 6, [Ru(NO)(NH3)5]+, 7, [Ru(NO)(NH3)5]2+, 8, e [Ru(NO)(NH3)5]3+, 9, de modo estudar a natureza da ligação química RuNO sobre a influência da carga total, bem como, da natureza e posição relativa de ligantes simples (Capítulo 5). Desta forma, em primeiro lugar, a partir da analise das cargas obtidas pelos métodos QTAIM e NBO em conjunto com a representação dos orbitais moleculares, temos que a primeira redução química em 3-->2 e 6-->5 ocorre sobre o orbital do átomo de Cl, ao passo que a segunda redução em 2-->1 e 5-->4, bem como, em 9-->8-->7 é sobre o orbital * do NO. Em seguida, os parâmetros geométricos, números de onda vibracionais de estiramento, e a analise da densidade eletrônica pelos métodos QTAIM e NBO mostram que a estabilidade termodinâmica da ligação RuNO nos compostos 16 aumenta na primeira redução, a partir de 3+ para 2+, contudo, diminuem na segunda redução, a partir de 2+ para +. Para os compostos 79, a estabilidade de RuNO diminui com a primeira redução da carga total, mas, aumenta na segunda redução. Sendo que o último processo é explicado pela interação entre o NO, e o Ru ser mais favorável em 7, do que o NO e o metal em 8. Para NO, uma diminuição da ordem de ligação é visualizada com a redução da carga total nas três classes de complexos: 13, 46 e 79. Em 16, a comparação das moléculas 1 e 4 frente a 8, assim como, 2 e 5 em relação a 9 demonstra que a influência negativa do grupo cloreto relativo a contribuição do ligante amina promove uma maior densidade eletrônica e mais favorável interação eletrostática na ligação RuNO. Adicionalmente, os resultados indicam um aumento da estabilidade em RuNO para 13 comparado a 46, devido à interação eletrostática entre Cl, e NO, apesar da densidade eletrônica nesta ligação química ser maior somente em 1 e 3 frente a 4 e 6, respectivamente. A seguir, foi realizado um estudo da influência do Effective Core Potential (ECP) em relação ao tratamento envolvendo todos os elétrons junto aos chamados efeitos relativísticos escalares por meio da aproximação secondorder DouglasKrollHess (DKH2). Isto foi realizado por meio da analise dos parâmetros geométricos dos complexos metálicos: 19 e trans[RuCl(NO)(NH3)4], 10. A partir das geometrias otimizadas com o conjunto de base com ECP, também foram avaliadas as energias das reações químicas de redução (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7 e F: 9-->8), isomerização (G: 1-->4, H: 2-->5 e I: 3-->6), e influência trans negativa do Cl (J: 7+Cl --> 10+NH3, K: 8+Cl --> 5+NH3 e L: 9+Cl --> 6+NH3) junto aos seguintes métodos computacionais: RIMP2, RISCSMP2, OORIMP2, OORISCSMP2, M06L, M06, M062X, M06HF, BP86D3BJ, BP86, B2PLYP, LCwPBE, e B3LYP. Sendo que o método CCSD(T) foi adotado como referência (Capítulo 6). Para a análise estatística foram utilizados os seguintes parâmetros: desvio negativo mínimo, Dneg(Mín), desvio positivo máximo, Dpos(Máx), desvio absoluto médio, DAM, e raiz quadrada do erro quadrático médio, RQEQM. Além destes parâmetros, foram empregados também valores relativos ao modelo computacional adotado como referência, CCSD(T)/def2TZVP, ou mesmo frente a resultados experimentais. Agora, os parâmetros geométricos obtidos com ECP frente à DKH2 apresentam valores próximos como pode ser destacado pelos valores do desvio absoluto médio relativo, DAMR, de 1,4 e 0,4% para os comprimentos e ângulos de ligação, respectivamente. Em adição, os dados calculados frente aos resultados experimentais de raiosX apresentam pequenos valores de DAMR, próximos a 4% para os comprimentos de ligação, e 3% para os ângulos de ligação, apesar do intervalo de desvios serem de (5%) 9% para r, e (5%) 7% para <. Para as energias das reações químicas propostas, o método B2PLYP apresentou resultados mais próximos ao obtido pelo CCSD(T) para AI, enquanto que o método B3LYP apresentou as energias mais próximas às obtidas com o método de referência para JL. Também foi estudada a natureza das ligações RuNO e RuNO2 no composto fac[Ru(NO)Cl2(3N4,N8,N11(1carboxipropil)cyclam)]Cl H2O ((1carboxipropil)cyclam) = 3(ácido 1,4,8,11tetraazociclotetradecan1il)propiônico), e em seus derivados junto as modificações do pH, por meio do modelo computacional B3LYP/ccpVDZ com pseudopotencial relativístico ECP28MDF para o Ru. Onde a analise da estrutura eletrônica foi realizada através dos métodos density overlap regions indicator (DORI), QTAIM, ELF e NBO (Capítulo 7). O método DORI permitiu se identificar uma região de recobrimento de densidade eletrônica entre o Ru e NO ou NO2 indicando a presença das ligações químicas RuNO e RuNO2. Os métodos QTAIM e ELF mostraram que estas ligações possuem um baixo caráter covalente. A analise da densidade eletrônica mostrou que o numero de elétrons compartilhados entre Ru e o NO aumenta a partir de 11 para 12, com a desprotonação do grupo carboxílico, porém, diminui com o aumento de pH e formação de 13, a partir da desprotonação de N(2), e 14, com a conversão da ligação RuNO para RuNO2. O método NBO também possibilitou determinar a interação entre os orbitais localizados d do Ru com * do NO ou NO2, relacionada ao processo de retrodoação , como mais favorável para a estabilização dos compostos 1114 frente à interação entre os NBOs do NO ou NO2 com d do Ru, pautada ao processo de doação . Sendo que a energia de estabilização de segunda ordem envolvendo os NBOs de simetria aumenta em 11-->12, devido à diminuição da diferença de energia e o aumento do recobrimento entre estes orbitais localizados. Entretanto, foi observada uma tendência contrária para 12-->13-->14, concordando com os resultados prévios. O mecanismo da ligação RuNO foi analisado a partir do complexo trans[RuCl(NO)(NH3)4]2+ (Capítulo 8). A geometria deste composto e a energia de dissociação de ligação (E) para as decomposições: trans[RuCl(NH3)4]+ + NO+, trans[RuCl(NH3)4]2+ + NO, e trans[RuCl(NH3)4]3+ + NO, foram obtidas junto aos modelos computacionais: ZORABP86/TZ2P e BP86/TZ2P, com o objetivo da avaliar a influência da aproximação ZORA no tratamento dos efeitos relativísticos. Os resultados mostraram que ambos os modelos computacionais apresentam uma boa concordância com os parâmetros geométricos obtidos por difração de raiosX que foram encontrados na literatura. Entretanto, os valores de E apresentaram uma diferença mais acentuada, e o modelo ZORABP86/TZ2P foi adotado nas seções seguintes deste estudo. Outro ponto é que a menor E foi obtida para trans[RuCl(NH3)4]+ + NO+, concordando com o ângulo de ligação RuNO próximo a 180º típico de compostos trans[Ru(NO)L(NH3)4]n+ que não apresentam sinais de EPR. Sendo assim, esta decomposição foi utilizada junto à teoria do orbital molecular de KohnSham em combinação com analise de decomposição energética para destacar algumas características do mecanismo da ligação RuNO. Assim sendo, na ligação RuNO sobre a influência trans negativa do Cl, estudada por meio da interação entre trans[RuCl(NH3)4]+ e NO+, temos uma energia de interação favorável porque, nesta estrutura, o termo de interação orbital contrabalança a repulsão eletrostática e a repulsão de Pauli. Por outro lado, a ligação RuNO na ausência do grupo Cl foi estudada através da interação entre trans[Ru(NH3)4]2+ e NO+, demostrando ser repulsiva devido a predominância da repulsão eletrostática frente a contribuição atrativa da interação orbital . Agora, a ligação RuCl na ausência de NO+, analisada a partir da interação entre trans[Ru(NH3)4]2+ e Cl, é atrativa devido ao considerável valor do termo eletrostático favorável. Ainda, o estudo do sinergismo entre os processos de doação e retrodoação presentes em RuNO mostrou que este é responsável por aumentar a estabilidade desta ligação. Porém, a retrodoação demonstrou não ser somente a mais importante, mas, também fundamental para a manutenção desta ligação química
4

Avaliação das Mudanças Recentes na Matriz Energética Brasileira e nas Emissões de CO2 Através do Modelo Insumo- Produto

Carneiro, Ana Cristina Guimarães 25 February 2010 (has links)
Made available in DSpace on 2015-05-08T14:45:03Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 658080 bytes, checksum: e04e46eeccee4aa62cffa4e241b4f09f (MD5) Previous issue date: 2010-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The global energy mix, including Brazil, has shown changes as their main sources of energy, in order to ensure efficiency and continuity of the production process. In this sense, this work aims to verify, through the hybrid input-output, such as changes in the Brazilian energy matrix between 2000 and 2005 impacted the intensity of CO2 emissions in Brazil. The hybrid matrix built account the energy consumed in the production process as a whole, taking into account the energy consumed in the production of final goods as well as the as the one used in the production of intermediate goods. Such research is necessary because there is a growing concern about environmental issues, and increased use of energy, whatever the source, increases the emission of CO2 in the atmosphere at the same time that energy resources are fundamental inputs for growth economic. For this, we used the input-output hybrid contemplating energy sectors to meet both cross-industry fuel consumption and thus CO2 emissions. In addition, we use the structural decomposition analysis to assess whether the change in emission is a result of technological change or whether it is a result of a demand shock. The result observed is that between the years 2000 and 2005 was the replacement of more polluting sources by less polluting as gas, mainly in the sectors of oil refining. But the increase in energy intensity generated an increase in CO2 emissions despite the natural gas is less polluting. For the energy sector, this variation is due mainly to changes in final demand. / As matrizes energéticas mundiais, inclusive a brasileira, vêm apresentando mudanças quanto as suas principais fontes de energia, como forma de garantir a eficiência e a continuidade do processo de produção. Nesse sentido, o presente trabalho objetiva verificar, através da matriz insumo-produto híbrida, como transformações na matriz energética brasileira entre 2000 e 2005 impactaram na intensidade de emissão de CO2 no Brasil. A matriz insumo-produto híbrida contabiliza a energia consumida no processo produtivo como um todo, levando em consideração a energia gasta na produção de bens final como também aquela utilizada na produção de bens intermediários. Tal pesquisa faz-se necessário porque há uma crescente preocupação com a questão ambiental, e o aumento do uso de energia, seja qual for à fonte, aumenta as emissões de CO2 na atmosfera ao mesmo tempo em que os recursos energéticos são insumos fundamentais para o crescimento econômico. Para isso, foram contemplados setores energéticos para conhecer as mudanças intersetoriais do consumo de combustíveis, e consequentemente da emissão de CO2. Além disso, utiliza-se a Análise de Decomposição Estrutural para avaliar se a variação da emissão é resultado de uma mudança tecnológica ou se é consequência de um choque de demanda. O resultado observado é que entre os anos de 2000 e 2005 houve a substituição de fontes mais poluentes por menos poluentes como o gás natural, principalmente nos setores de refino de petróleo. Mas, o aumento da intensidade energética, gerou um acréscimo na emissão de CO2 apesar do gás natural ser menos poluente. Para o setor energético, essa variação é conseqüência, principalmente, de mudanças na demanda final.
5

Decomposição da variação da produção dos setores de saúde: o caso do Brasil e dos Estados Unidos

Cabral, Joilson de Assis 14 December 2010 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-10-04T19:25:41Z No. of bitstreams: 1 joilsondeassiscabral.pdf: 677858 bytes, checksum: 23b1a0e11632e5ef6df97a4e444b7690 (MD5) / Approved for entry into archive by Diamantino Mayra (mayra.diamantino@ufjf.edu.br) on 2016-10-05T10:52:46Z (GMT) No. of bitstreams: 1 joilsondeassiscabral.pdf: 677858 bytes, checksum: 23b1a0e11632e5ef6df97a4e444b7690 (MD5) / Made available in DSpace on 2016-10-05T10:52:46Z (GMT). No. of bitstreams: 1 joilsondeassiscabral.pdf: 677858 bytes, checksum: 23b1a0e11632e5ef6df97a4e444b7690 (MD5) Previous issue date: 2010-12-14 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Economia da Saúde obteve maior atenção por parte dos formuladores de política econômica após a Segunda Grande Guerra tendo em vista que a saúde, ou a ausência dela, é uma variável macroeconômica que retrata o nível de desenvolvimento econômico de uma região. A saúde incidiria sobre a qualidade do capital humano e sobre o incentivo/desincentivo à entrada de investimentos (PIOLA et al., 2002). Por estarem diretamente associados à vida, do ponto de vista individual, não existe saciedade em relação aos bens e serviços de Saúde (ANDRADE, 2000). Neste contexto, a presente dissertação realizou a decomposição da variação da produção dos setores de Saúde em efeitos de mudança tecnológica (coeficientes técnicos) e de mudança na demanda final para os anos de 2000 e 2005 no caso brasileiro e 1997 e 2002 para os EUA. O objetivo primordial desta decomposição foi investigar, de forma detalhada, a estrutura produtiva dos setores ligados à Saúde contemplados nesta dissertação e suas interdependências com os demais setores da economia e com os componentes da demanda final. Os resultados da Análise de Decomposição Estrutural (SDA) demonstram que a economia brasileira possui um forte componente de crescimento influenciado pela demanda final. Este padrão é mantido para os setores relacionados à Saúde. Quanto ao desempenho tecnológico da economia brasileira, tornou-se nítida a existência de certo grau de disparidade tecnológica inter-setorial. No que tange aos setores da Saúde, os setores que mais se destacaram com um aumento do dinamismo tecnológico foram Assistência médica suplementar e Fabricação de produtos farmacêuticos. Os demais setores relacionados à Saúde, em geral, possuem uma mesma trajetória tecnológica, sendo setores “dominados pelos fornecedores” e “puxados pela demanda”. Os resultados da SDA realizada para a economia norte-americana revelaram que a variação do VBP, entre 1997 e 2002, foi vigorosamente influenciada pelo componente de demanda final. Refinando a análise para os setores relacionados à Saúde, os resultados mostraram relativa estabilidade tecnológica para os setores de serviços de Saúde no período analisado. No que tange aos setores industriais da Saúde, houve perda expressiva de dinamismo tecnológico. Ao comparar a variação do componente tecnológico nos períodos de análise entre Brasil e EUA, percebe-se que os setores ligados à Saúde permaneceram estáveis no que se refere à variação tecnológica, à exceção do setor de Fabricação de Produtos Farmacêuticos em que foi verificado relevante avanço tecnológico no Brasil e variação negativa nos EUA. Ao analisar o componente tecnológico de forma desagregada, verifica-se, mais uma vez, um padrão divergente: para o caso brasileiro nota-se um esforço tecnológico oriundo do setor público enquanto no caso norte-americano, há um esforço tecnológico do setor privado. O setor de Saúde referente à Fabricação de Instrumentos Médicos apresenta perda de dinamismo tecnológico nos dois países. Já os setores de serviços de Saúde mantiveram variação tecnológica relativamente constante, em ambas as economias, nos períodos considerados. Com relação à demanda final, foi verificado forte influência do componente de demanda final na determinação do crescimento do Produto dos setores de Saúde brasileiros e norte-americanos. / Health Economics got greater attention from economic policy makers after the Second World War. Health or lack of health is a macroeconomic variable that shows the level of economic development in a region. The health would affect the quality of human capital and the incentive / disincentive the investment flows (PIOLA et al., 2002). By being directly associated with the life from the individual point of view, there is no satiety for goods and services of Health (ANDRADE, 2000). In this context, this paper carried out the decomposition of the variation of production in the health sectors into two effects: a) a technological change (technical coefficients) and b) change in final demand for the years 2000 and 2005 in the Brazilian case and 1997 and 2002 for the USA. The primary goal of this decomposition was to investigate in detail the structure of the productive sectors related to health included in this dissertation and their interdependencies with other sectors of the economy and the components of final demand. Results of Structural Decomposition Analysis (SDA) show that the Brazilian economy has a strong component of growth influenced by the final demand. This pattern is maintained for the areas related to Health. In relation to the technological performance of Brazilian economy, it became clear that there are significant technological differences among the sectors. With regard to the sectors of Health, the sectors that stood out with an increase in technological dynamism were additional medical care and manufacturing of pharmaceuticals. The other sectors related to health, in general, have the same technological trajectory, and "dominated by suppliers" and "pushed by demand." The results of the SDA held for the U.S. economy showed that the variation of GDP, between 1997 and 2002 was strongly influenced by the final demand component. Refining the analysis for the sectors related to health, the results for the technological component are relatively stable for the sectors of health services in this period. With regard to industrial sectors of Health, there was significant loss of technological dynamism. By comparing the variation of the technology component in the periods of analysis between the U.S. and Brazil, we find that sectors related to health remained stable in relation to technological change, except for the sector of Manufacturing of Pharmaceuticals in which, in terms of technological component, significant progress was observed in Brazil and negative change in the U.S. Analyzing the technological component disaggregated, there is, again, a divergent pattern: for the Brazilian case we note a technological effort that comes from the public sector while in the U.S. case, there is a technological efforts that is due to the private sector. The Production of Medical Instruments has loss of technological dynamism in both countries. The sectors of health services remained relatively constant in terms of technological change, in both economies in the periods considered. With regard to final demand, it was found strong influence of the final demand component in determining the final product growth in the Brazilians and Americans Health sector.
6

Estrutura de renda, consumo e sistema produtivo: mudanças na economia brasileira entre 2000 e 2010

Silva, Marcus Vinícius Amaral e 03 July 2018 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-07-20T15:20:49Z No. of bitstreams: 1 marcusviniciusamaralesilva.pdf: 2590619 bytes, checksum: 4fd347134630b770de59aaaa2aa2fd58 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-03T16:18:00Z (GMT) No. of bitstreams: 1 marcusviniciusamaralesilva.pdf: 2590619 bytes, checksum: 4fd347134630b770de59aaaa2aa2fd58 (MD5) / Made available in DSpace on 2018-09-03T16:18:00Z (GMT). No. of bitstreams: 1 marcusviniciusamaralesilva.pdf: 2590619 bytes, checksum: 4fd347134630b770de59aaaa2aa2fd58 (MD5) Previous issue date: 2018-07-03 / O objetivo desta tese é analisar as mudanças na estrutura de rendimento, ocorridas na economia brasileira entre 2000 e 2010, e sua relação com as alterações nos padrões de consumo e as transformações na estrutura produtiva do país. Para isso, são elaboradas duas matrizes, por meio de um modelo de Matriz de Contabilidade Social (MCS), desagregada para 10 grupos familiares representativos. A estrutura de interdependência de renda entre as famílias é investigada por meio dos multiplicadores inter-relacionais de renda de Miyazawa. Já as mudanças na estrutura produtiva, entre 2000 e 2010, induzida por cada uma das 10 famílias típicas é investigada por meio de uma Análise de Decomposição Estrutural. Os principais resultados alcançados pela aplicação desses dos dois métodos apontam para uma relevante redução na renda absorvida pela última classe familiar, dado um choque exógeno de renda, ao longo do período de análise. Por outro lado, as famílias que fazem parte dos grupos de menor rendimento, tiveram aumento significativo na absorção de renda entre 2000 e 2010. O que pode ser explicado pelas transformações na estrutura de rendimentos, ocorridas principalmente em favor das classes familiares de menor renda, representadas sobretudo pela redução dos indicadores de desigualdade de renda. Isso implica que, políticas de transferência de renda, como o Bolsa Família, e as mudanças no mercado de trabalho, observada principalmente por meio do aumento do salário mínimo real, passaram a gerar maiores benefícios às camadas mais pobres da população. Já a análise de decomposição estrutural indica que os grupos familiares com menor rendimento médio foram aqueles que mais contribuíram para o aumento da produção observada no período. Esse resultado sugere que o crescimento da renda, associado a novos padrões de consumo, está intimamente ligado aos avanços produtivos entre 2000 e 2010. / The aim of this thesis is to analyze the changes in the structure of income that occurred in the Brazilian economy between 2000 and 2010, and it's relation with the changes in patterns of consumption and the transformations in the productive structure of the country. To achieve this objective, two matrices are elaborated, using a Social Accounting Matrix (SAM) model, disaggregated for 10 representative households groups. The structure of income interdependence among households is investigated through Miyazawa's interrelational income multipliers. The changes in the productive structure, between 2000 and 2010, induced by each one of the 10 typical families are investigated through a Structural Decomposition Analysis (SDA). The main results point to a significant reduction in the income absorbed by the last household, given an exogenous income shock, throughout the period of analysis. On the other hand, the families that are part of the lower income groups had a significant increase in income absorption between 2000 and 2010. This can be explained by the changes in income structure, mainly in favor of lower income households, mainly represented by the reduction of income inequality indicators. This implies that income transfer policies, such as Bolsa Família, and changes in the labor market, observed mainly through the increase of the real minimum wage, generated greater benefits to the poorest sections of the population. On the other hand, the analysis of structural decomposition indicates that the household groups with the lowest average income were the ones that contributed the most to the production increase observed in the period. This result suggests that income growth and the rise of a new middle class, with new patterns of consumption, are closely linked to the productive advances between 2000 and 2010.

Page generated in 0.078 seconds