• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Biodegradação de sulfametoxazol e ciprofloxacino em reator anaeróbio horizontal de leito fixo / Sulfamethoxazole and ciprofloxacin biodegradation in a horizontal anaerobic immobilized sludge reactor

Chatila, Sami 22 November 2013 (has links)
O presente trabalho aborda a biodegradação de sulfametoxazol e ciprofloxacino em 2 reatores anaeróbios horizontais de leito fixo (RAHLF). Os reatores foram operados e mantidos em regime permanente com um tempo de detenção hidráulica de 16 a 17 horas com uma água residuária sintética que simula o esgoto sanitário na temperatura de 25°C. Foi avaliado o estado dos reatores como ponto de referência para os próximos passos. A contaminação com sulfametoxazol e ciprofloxacino iniciou-se, então, e o comportamento dos reatores foi avaliado. As concentrações dos antimicrobianos foram analisadas por extração em fase sólida acoplada com espectrometria de massa. Ambos antimicrobianos foram degradados pelos reatores até níveis abaixo do limite de quantificação dos métodos de análise. Utilizando os dados de DQO e as análises dos antimicrobianos, junto com dados cinéticos obtidos, foi determinado que o RAHLF tem resistência a estes compostos e concentrações até uma ordem de magnitude acima das encontradas em condições reais. A degradação do sulfametoxazol foi muito eficiente e é previsto que um RAHLF típico em operação consegue degradar mais que 99% do sulfametoxazol. A degradação do ciprofloxacino foi menos eficiente, com remoção prevista para RAHLF típico de 80% a 90%. / The present project approaches sulfamethoxazole and ciprofloxacin biodegradation in two horizontal anaerobic immobilized sludge (HAIS) reactors. The reactors were operated and maintained at dynamic stability with a hydraulic retention time of 16 to 17 hours using synthetic wastewater, which simulates domestic wastewater, at 25°C. The dynamically stable state was evaluated as a control for the following steps. The reactors were then continuously fed with synthetic wastewater contaminated with sulfamethoxazole and ciprofloxacin, independently, and their behaviors were observed. The antibiotics\' concentrations were analyzed by solid phase extraction couples with mass spectrometry. Both antibiotics were degraded in the bioreactors to below quantification limits. Using COD and antibiotic data and derived kinetic constants, it was shown that a typical operating HAIS reactor with a hydraulic retention time of 6 to 8 hours should be capable of removing over 99% of sulfamethoxazole in its influent. Ciprofloxacin removal was less efficient, but was nevertheless promising, with a removal rate of 80% to 90% in typical conditions.
12

Evaluation of the Biodegradability of MTBE in Groundwater

Chen, Ku-Fan 24 May 2006 (has links)
Methyl tert-butyl ether (MTBE) has been used as a gasoline additive to improve the combustion efficiency and to replace lead since 1978. It is the most commonly used oxygenate now due to its low cost, convenience of transfer, and ease of blending and production. MTBE has become a prevalent groundwater contaminant because it is widely used and it has been disposed inappropriately. MTBE has been demonstrated an animal carcinogen. The US Environmental Protection Agency (US EPA) has temporarily classified MTBE as a possible human carcinogen and has set its advisory level for drinking water at 20-40 µg/L based on taste and odor concerns. The Taiwan Environmental Protection Administration (TEPA) also classifies it as the Class IV toxic chemical substances. Currently, natural attenuation (NA) as well as natural bioremediation or enhanced bioremediation are attractive remediation options for contaminated sites due to their economic benefit and environmental friendly. In general, in situ microorganisms at the contaminated site play a very important role in site restoration. Although early studies suggested that the biodegradability of MTBE was not significant, recent laboratory and field reports reveal that MTBE can be biodegraded under aerobic and anaerobic conditions. In addition, evidences and some successful cases of MTBE attenuation have been reported that make natural attenuation a considerable remedial strategy. However, the biodegrading rate might decrease if the nutritional and physiological requirements are not met. Thus, it is important to assess the biodegradability of natural microorganisms under various site conditions to obtain optimal remedial conditions. Contributions of intrinsic biodegradation and other abiotic mechanisms to the removal and control of contaminants should also be evaluated to provide sufficient information for remedial option determination. Moreover, isolation and identification of the dominant native microorganisms will be helpful to following remediation tasks. In the first part of this study, microcosm study and microbial identification technologies (denaturing gradient gel electrophoresis, DGGE) were applied to assess the biodegradability of MTBE by indigenous microbial consortia and to identify the dominant microorganisms at a MTBE-contaminated site (Site A). In the second part of this study, thorough field investigations were performed to evaluate the occurrence of natural attenuation of MTBE at two MTBE-contaminated sites (Site A and Site B). In addition, a natural attenuation model, BIOSCREEN, was performed to assess the effectiveness of natural attenuation on MTBE containment. The main objectives of this study contained the following: (1)Evaluate MTBE biodegradability under different redox conditions by the indigenous microorganisms. (2)Determine the dominant native microorganisms in MTBE biodegradation for further application. (3)Assess the feasibility of using natural attenuation to control the MTBE plume. (4)Evaluate the contributions of intrinsic biodegradation patterns on natural attenuation processes by BIOSCREEN. Results from the microcosm study reveal that MTBE could be biodegraded by aquifer sediments without the addition of extra carbon sources under aerobic conditions. The production of tert-butyl alcohol (TBA), a degradation byproduct of MTBE, was detected. Complete removal of TBA was also observed by the end of the experiment. Results from aerobic microcosms study indicate that oxygen might be the major limiting factor of MTBE biodegradation at Site A. Thus, MTBE at this site could be removed via natural biodegradation processes with the supplement of sufficient oxygen. Microcosm study with extracted supernatant of aquifer sediments as the inocula show that the indigenous microorganisms were capable of using MTBE as the sole carbon and energy source. The calculated MTBE degradation rate was 0.597 mg/g cells/h or 0.194 nmole/mg cells/h. No MTBE removal was observed under various anaerobic conditions. Results suggest that aerobic biodegradation was the dominant degradation process and aerobic bioremediation might be a more appropriate option for the site remediation. According to the results of DGGE analysis, aerobic MTBE-biodegrading bacteria, Pseudomonas sp. and Xanthomonas sp., might exist at this site. Although results of microcosm study show that MTBE could not be degraded under anaerobic conditions, the microbial identification indicates that some novel anaerobic microbes, which could degraded MTBE, might be present at this site. In addition, anaerobic microbes caused the consumption of electron acceptors (e.g., nitrate, ferric iron) and removal of benzene, toluene, ethylbenzene, xylenes (BTEX), 1,2,4-trimethyl benzene (1,2,4-TMB), and 1,3,5-trimethyl benzene (1,3,5-TMB) (TMBs) in the anaerobic microcosms. These results also indicate that the potential of anaerobes activities was high at Site A. Based on the results from the field investigation, natural attenuation of MTBE was occurring at both sites. MTBE plume at Site B could be effectively controlled via natural attenuation processes. Nevertheless, MTBE plume at Site A has migrated to a farther downgradient area and passed the boundary of the site. Field investigation results indicate that the natural attenuation mechanisms of MTBE at both sites were occurring with the first-order attenuation rates of 0.0021 and 0.0048 1/day at Sites A and B, respectively. According to BIOSCREEN simulation, biodegradation was responsible for 78% and 59% of MTBE mass reduction at Sites A and B, respectively. The intrinsic biodegradation had significant contributions on the control of MTBE plumes. Moreover, the dilution and dispersion processes might be the major mechanisms for the attenuation of MTBE in the downgradient areas. However, results also reveal that intrinsic biological processes might still fail to contain the plume if the selected point of compliance is not appropriate. Results of this study suggest that natural attenuation might be feasible to be used as a remedial option for the remediation of MTBE-contaminated site on the premise that (1) detailed site characterization has been conducted, and (2) the occurrence and effectiveness of natural attenuation processes have been confirmed. Based on the results from the field investigation and laboratory microcosm studies, MTBE could be biodegraded by natural microbial populations at the studied sites under both aerobic and anaerobic conditions and natural attenuation would be applied as a remedial option at MTBE-contaminated sites. Results from this study would be useful in determining the favorable bioremediation conditions and designing an efficient and cost-effective bioremediation system such as monitored natural attenuation (MNA) or in situ or on-site MTBE bioremediation system for field application.
13

Fate of phytosterols in pulp and paper wastewater treated in a simulated aerated stabilization basin

Dykstra, Christine M. 27 August 2014 (has links)
Phytosterols are steroid chemicals produced by plants for the purposes of membrane function and hormone production. Phytosterols can cause endocrine disruption in aquatic species at very low concentrations and are suspected of contributing to endocrine disruption linked to pulp and paper effluent. Wastewater from the pulp and paper industry is often treated biologically in aerated stabilization basins (ASBs) that expose phytosterols to a range of redox zones. Phytosterol removal in ASBs varies and stigmasterol has even been shown to increase across the treatment system. Little is known about the microbial processes that occur within ASBs and their effect on phytosterol removal. The objective of this research was to assess the biotransformation potential of phytosterols in a simulated ASB treatment system and to improve understanding of the processes that occur within the various redox zones and their impact on the removal of phytosterols. To assess the biotransformation of phytosterols under aerobic conditions, three assays were conducted using a stock aerobic culture fed with pulp and paper wastewater. The assays tested three conditions: phytosterols present as a sole added carbon source, phytosterols with dextrin as an added carbon source, and phytosterols with ethanol as a solubilizing agent and added carbon source. Phytosterol biotransformation was found to be limited by low phytosterol solubility. When solubilized, phytosterol removal occurred in two phases: an initial near-linear removal, followed by accelerated removal during the culture's stationary stage, possibly due to the release of extracellular cholesterol oxidase. The anoxic and anaerobic biotransformation of phytosterols was examined through a series of three semi-batch cultures maintained under nitrate-reducing, sulfate-reducing and fermentative/methanogenic conditions, all developed from stock cultures fed with pulp and paper wastewater. Phytosterol removal was significant in the nitrate-reducing culture, although microbial activity and phytosterol removal declined in later stages. Phytosterol removal was also observed in the sulfate-reducing culture, although there was a significant lag period before removal occurred. No phytosterol removal was observed in the fermentative/methanogenic culture. Phytosterol biotransformation was also examined in the context of a lab-scale ASB fed continuously with pulp and paper wastewater. The steady-state ASB effluent and sediment characteristics were examined over three hydraulic retention times (HRTs). Effluent quality was not significantly affected by a change in HRT but sediment characteristics were significantly affected and, at shorter HRTs, phytosterols accumulated in the sediment. Wastewater bioassays demonstrated the release of phytosterols during the breakdown of solids. This research improves the understanding of biological processes within ASBs and their effect on phytosterol removal.
14

Effect of Leachate Blending on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste

Nair, Arjun 19 August 2013 (has links)
Anaerobic digestion of the Organic Fraction of Municipal Solid Waste (OFMSW) generates a mixture of methane (CH4), carbon dioxide (CO2) and water (H2O). Beyond the field capacity the water generated is collected and recirculated as leachate in Bioreactor Landfills (BLs.) Leachate recirculation has a profound advantage on biodegradation of the Organic Fraction of Municipal Solid Waste (OFMSW) in the landfills. Mature leachate from older sections of landfills (>20 years) and young leachate were blended prior to recirculation in the ratios 3/3 mature, 3/3 young, 1/3 mature-2/3 young and 2/3 old-1/3 young and their effect on biodegradation and biogas production monitored. In addition to analysis of the effect of blending old and new leachates, the study also analyses the effect of an open vs. a closed recirculation loop and the effect of organic loading rates of OFMSW in landfills. Data collected from initial batch tests supplement column bioreactors simulating bioreactor landfills with real world OFMSW from operational landfill facilities in Ontario, Canada. The results are conclusive that the biogas generation can be improved by up to 92% by blending the leachate in an open loop recirculation system as compared to a conventional closed loop system employed in landfills today.
15

Biodegradação de sulfametoxazol e ciprofloxacino em reator anaeróbio horizontal de leito fixo / Sulfamethoxazole and ciprofloxacin biodegradation in a horizontal anaerobic immobilized sludge reactor

Sami Chatila 22 November 2013 (has links)
O presente trabalho aborda a biodegradação de sulfametoxazol e ciprofloxacino em 2 reatores anaeróbios horizontais de leito fixo (RAHLF). Os reatores foram operados e mantidos em regime permanente com um tempo de detenção hidráulica de 16 a 17 horas com uma água residuária sintética que simula o esgoto sanitário na temperatura de 25°C. Foi avaliado o estado dos reatores como ponto de referência para os próximos passos. A contaminação com sulfametoxazol e ciprofloxacino iniciou-se, então, e o comportamento dos reatores foi avaliado. As concentrações dos antimicrobianos foram analisadas por extração em fase sólida acoplada com espectrometria de massa. Ambos antimicrobianos foram degradados pelos reatores até níveis abaixo do limite de quantificação dos métodos de análise. Utilizando os dados de DQO e as análises dos antimicrobianos, junto com dados cinéticos obtidos, foi determinado que o RAHLF tem resistência a estes compostos e concentrações até uma ordem de magnitude acima das encontradas em condições reais. A degradação do sulfametoxazol foi muito eficiente e é previsto que um RAHLF típico em operação consegue degradar mais que 99% do sulfametoxazol. A degradação do ciprofloxacino foi menos eficiente, com remoção prevista para RAHLF típico de 80% a 90%. / The present project approaches sulfamethoxazole and ciprofloxacin biodegradation in two horizontal anaerobic immobilized sludge (HAIS) reactors. The reactors were operated and maintained at dynamic stability with a hydraulic retention time of 16 to 17 hours using synthetic wastewater, which simulates domestic wastewater, at 25°C. The dynamically stable state was evaluated as a control for the following steps. The reactors were then continuously fed with synthetic wastewater contaminated with sulfamethoxazole and ciprofloxacin, independently, and their behaviors were observed. The antibiotics\' concentrations were analyzed by solid phase extraction couples with mass spectrometry. Both antibiotics were degraded in the bioreactors to below quantification limits. Using COD and antibiotic data and derived kinetic constants, it was shown that a typical operating HAIS reactor with a hydraulic retention time of 6 to 8 hours should be capable of removing over 99% of sulfamethoxazole in its influent. Ciprofloxacin removal was less efficient, but was nevertheless promising, with a removal rate of 80% to 90% in typical conditions.
16

Modeling the Biota Population Impact on Polychlorinated Biphenyls Transport and Simulating PCBs Anaerobic Biodegradation in the Lake System

Sun, Xiangfei 01 April 2018 (has links)
No description available.
17

Effect of Leachate Blending on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste

Nair, Arjun January 2013 (has links)
Anaerobic digestion of the Organic Fraction of Municipal Solid Waste (OFMSW) generates a mixture of methane (CH4), carbon dioxide (CO2) and water (H2O). Beyond the field capacity the water generated is collected and recirculated as leachate in Bioreactor Landfills (BLs.) Leachate recirculation has a profound advantage on biodegradation of the Organic Fraction of Municipal Solid Waste (OFMSW) in the landfills. Mature leachate from older sections of landfills (>20 years) and young leachate were blended prior to recirculation in the ratios 3/3 mature, 3/3 young, 1/3 mature-2/3 young and 2/3 old-1/3 young and their effect on biodegradation and biogas production monitored. In addition to analysis of the effect of blending old and new leachates, the study also analyses the effect of an open vs. a closed recirculation loop and the effect of organic loading rates of OFMSW in landfills. Data collected from initial batch tests supplement column bioreactors simulating bioreactor landfills with real world OFMSW from operational landfill facilities in Ontario, Canada. The results are conclusive that the biogas generation can be improved by up to 92% by blending the leachate in an open loop recirculation system as compared to a conventional closed loop system employed in landfills today.
18

Biodégradation des Hydrocarbures en milieux hypersalins : modes de transferts et réponses des communautés procaryotiques à une contamination pétrolière. / hydrocarbons biodegradation in hypersaline environments : modes of transfer and responses of prokaryotic communities to oil contamination

Djeridi, Ikram 27 September 2013 (has links)
Le devenir des hydrocarbures (HC) dans les environnements hypersalins constitue une problématique environnementale majeure. Ce travail pour objectifs (1) d’évaluer l’impact d’une pollution pétrolière sur les communautés microbiennes d’un milieu hypersalin, (2) de déterminer comment les archées hydrocarbonoclastes accèdent aux HC et, (3) de déterminer si la biodégradation est possible en conditions anaérobies dans ces environnements hypersalés. Nous avons démontré qu’une biodégradation modérée du pétrole est possible en milieu hypersalin environ 10 % de la fraction aliphatique du pétrole sont biodégradé. Une disparition progressive des composés aromatiques les plus légers est également observée, liée aux processus abiotiques. La dynamique des communautés procaryotiques montre un changement dans la structure de la communauté bactérienne autochtone des saumures. Une résistance à la contamination pétrolière a en revanche été observée pour les communautés archéennes des saumures. Dans une deuxième partie du travail, nous avons pu montrer, à l’aide d’une souche d’archée hyperhalophile modèle (Haloferax volcanii MSCN14), que les archées hydrocarbonoclastes de ces environnements mettent en oeuvre plusieurs mécanismes leur permettant d’augmenter la biodisponibilité des HC. Dans une dernière partie des travaux, nous avons testé les capacités d’une souche modèle (Hfx. volcanii MSNC 16) à dégrader les HC en anaérobiose. Si Hfx. volcanii MSNC16 est bien capable d’utiliser le fumarate comme accepteur terminal d’électrons, elle n’est en revanche pas capable de dégrader l’alcane testé (heptadécane) en absence d’oxygène. / The fate of hydrocarbons (HC) in hypersaline environments is an important environmental issue. This work aimed to (1) assess the impact of oil pollution on microbial communities of a hypersaline environment, (2) determine how hydrocarbonoclastic archaea can access to HC and (3) whether biodegradation is possible in these hypersaline environments in the absence of oxygen. We have shown that moderate oil biodegradation is possible under hypersaline conditions. In these conditions close to natural ones, about 10% of the aliphatic hydrocarbons were biodegrade. A gradual disappearance of the lighter aromatic compounds was also observed, but these losses were mainly due to abiotic processes. The monitoring of prokaryotic communities based on molecular fingerprints showed a change in the structure of the indigenous bacterial community. On the contrary, resistance to oil contamination was observed among the indigenous archaeal communities of brines. In the second part of this work, laboratory cultures of a hyperhalophilic archaeal strain (Haloferax volcanii MSCN14), allowed to demonstrate that, in hypersaline environments, hydrocarbonoclastic archaea use several strategies to increase the bioavailability of HC. Indeed, strain MSCN14 was capable of producing one or several biosurfactants during growth on different HC, and was adhering to the surface of the HC. In the last part of this work, we tested the capacities of a model archaeal strain (Hfx. volcanii MSNC 16) to degrade HC anaerobically. If Hfx. volcanii MSNC16 was able to use fumarate as a terminal electron acceptor, it was, however, not capable of degrading heptadecane in the absence of oxygen.
19

Biodegradation of Aliphatic Chlorinated Hydrocarbon (PCE, TCE and DCE) in Contaminated Soil.

Tibui, Aloysius January 2006 (has links)
<p>Soil bottles and soil slurry experiments were conducted to investigate the effect of some additives on the aerobic and anaerobic biodegradation of chlorinated aliphatic hydrocarbons; tetrachloroethylene (PCE), trichloroethylene (TCE) and dichloroethylene (DCE) in a contaminated soil from Startvätten AB Linköping Sweden. For the aerobic degradation study the soil sample was divided into two groups, one was fertilised. The two groups of soil in the experimental bottles were treated to varying amount of methane in pairs. DCE and TCE were added to all samples while PCE was found in the contaminated soil. Both aerobic and anaerobic experiments were conducted. For aerobic study air was added to all bottles to serve as electron acceptor (oxygen). It was observed that all the samples showed a very small amount of methane consumption while the fertilised soil samples showed more oxygen consumption. For the chlorinated compounds the expected degradation could not be ascertained since the control and experimental set up were more or less the same.</p><p>For the anaerobic biodegradation study soil slurry was made with different media i.e. basic mineral medium (BM), BM and an organic compound (lactate), water and sulphide, phosphate buffer and sulphide and phosphate buffer, sulphide and ammonia. To assure anaerobic conditions, the headspace in the experimental bottles was changed to N2/CO2. As for the aerobic study all the samples were added DCE and TCE while PCE was found in the contaminated soil. The sample without the soil i.e. the control was also given PCE. It was observed that there was no clear decrease in the GC peak area of the pollutants in the different media. The decrease in GC peak area of the pollutants could not be seen, this may be so because more susceptible microorganisms are required, stringent addition of nutrients and to lower the risk of the high concentration of PCE and petroleum products in the soil from Startvätten AB.</p>
20

Biodegradation of Aliphatic Chlorinated Hydrocarbon (PCE, TCE and DCE) in Contaminated Soil.

Tibui, Aloysius January 2006 (has links)
Soil bottles and soil slurry experiments were conducted to investigate the effect of some additives on the aerobic and anaerobic biodegradation of chlorinated aliphatic hydrocarbons; tetrachloroethylene (PCE), trichloroethylene (TCE) and dichloroethylene (DCE) in a contaminated soil from Startvätten AB Linköping Sweden. For the aerobic degradation study the soil sample was divided into two groups, one was fertilised. The two groups of soil in the experimental bottles were treated to varying amount of methane in pairs. DCE and TCE were added to all samples while PCE was found in the contaminated soil. Both aerobic and anaerobic experiments were conducted. For aerobic study air was added to all bottles to serve as electron acceptor (oxygen). It was observed that all the samples showed a very small amount of methane consumption while the fertilised soil samples showed more oxygen consumption. For the chlorinated compounds the expected degradation could not be ascertained since the control and experimental set up were more or less the same. For the anaerobic biodegradation study soil slurry was made with different media i.e. basic mineral medium (BM), BM and an organic compound (lactate), water and sulphide, phosphate buffer and sulphide and phosphate buffer, sulphide and ammonia. To assure anaerobic conditions, the headspace in the experimental bottles was changed to N2/CO2. As for the aerobic study all the samples were added DCE and TCE while PCE was found in the contaminated soil. The sample without the soil i.e. the control was also given PCE. It was observed that there was no clear decrease in the GC peak area of the pollutants in the different media. The decrease in GC peak area of the pollutants could not be seen, this may be so because more susceptible microorganisms are required, stringent addition of nutrients and to lower the risk of the high concentration of PCE and petroleum products in the soil from Startvätten AB.

Page generated in 0.4948 seconds