• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 687
  • 599
  • 76
  • 44
  • 43
  • 41
  • 21
  • 17
  • 16
  • 15
  • 13
  • 9
  • 7
  • 5
  • 5
  • Tagged with
  • 1815
  • 654
  • 358
  • 322
  • 254
  • 252
  • 236
  • 222
  • 221
  • 201
  • 200
  • 196
  • 194
  • 188
  • 165
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

The Microbubble Assisted Bioremediation of Chlorinated Ethenes

Kaiser, Philip Marc Jr. 23 April 1998 (has links)
This work focused on using a microbubble dispersion to deliver hydrogen and carbon dioxide to anaerobic consortia to stimulate their ability to reductively dehalogenate tetrachloroethylene all the way to ethene and ethane. A continuous flow system, consisting of six anaerobic soil column bioreactors, inoculated with sediments from Virginia Tech's Duck Pond, was used for this study. Two columns received microbubbles containing hydrogen and carbon dioxide, two received sodium propionate, and two were not fed a substrate. A 30 micromolar PCE solution was delivered to the consortia at 3 ml/min. Microbubbles containing a mixture of 90% hydrogen and 10% carbon dioxide were effectively produced in a closed spinning disk generator, and were acceptable for delivering the gases to the columns. After the biodegradation study was completed, the microbubbles were found to have a pH of 4.4, due to the carbon dioxide. Microbubbles amended with NaOH to 0.01 molar yielded pH neutral microbubbles with improved stability. Methane was measured in all six columns throughout the experiment, verifying that methanogens were present. Methane levels were highest in the propionate columns, showing the the methanogens there were more active. Methane levels in the microbubble columns were similar to those in the control columns. Propionate and acetate were not detected in the columns where propionate was fed, showing that proton reducers and acetoclastic methanogens were both active. Recovery of PCE and the degradation products was almost 90% in the microbubble and control columns where most of the PCE was recovered in the effluent. The predominant product in both systems was TCE, although some ethene was detected in all four columns. The control consortia produced TCE averaging about five micromolar while the microbubble columns averaged about two micromolar TCE. One of the components of the microbubbles probably caused the lowered amounts of PCE reduction. That some ethene was seen in the microbubble columns suggests different conditions can be found to stimulate the further reduction of PCE with hydrogen and carbon dioxide microbubbles. The product recovery in the propionate columns was about 64%. Over half of the injected PCE was dechlorinated to ethene and ethane. / Ph. D.
412

Anaerobic / Aerobic Digestion for Enhanced Solids and Nitrogen Removal

Banjade, Sarita 22 January 2009 (has links)
Anaerobic digestion of wastewater sludge has widely been in application for stabilization of sludge. With the increase in hauling cost and many environmental and health concerns regarding land application of biosolids, digestion processes generating minimized sludge with better effluent characteristics is becoming important for many public and wastewater utilities. This study was designed to investigate the performance of anaerobic-aerobic-anaerobic digestion of sludge and compare it to anaerobic-aerobic digestion and single stage mesophilic digestion of sludge. Experiments were carried out in three stages: Single-stage mesophilic anaerobic digestion (MAD) 20d SRT; Sequential Anaerobic/Aerobic digestion (Ana/Aer); and Anaerobic/Aerobic/Anaerobic digestion (An/Aer/An). The Anaerobic/Aerobic/Anaerobic digestion of sludge was studied with two options to determine the best option in terms of effluent characteristics. The two sludge withdrawal options were to withdraw effluent from the anaerobic digester (An/Aer/An – A) or withdraw effluent from the aerobic digester (An/Aer/An – B). Different operational parameters, such as COD removal, VS destruction, biogas production, Nitrogen removal, odor removal and dewatering properties of the resulting biosolids were studied and the results were compared among different processes. From the study, it was found that An/Aer/An – B (wastage from aerobic reactor) provided better effluent characteristics than An/Aer/An – A (wastage from anaerobic reactor), Ana/Aer or conventional MAD. The study also shows that the Anaerobic/Aerobic/Anaerobic (An/Aer/An, with wastage from the aerobic or anaerobic digester) digestion of the sludge can improve the biosolids quality by improving the dewatering capabilities, with lower optimum polymer dose, reduced CST and increased cake solid concentration, and reduce the odor generation from the biosolids. Both An/Aer/Ana – A and An/Aer/An – B gave 70% VS removal, compared to 50% with single MAD and 62% with only Ana/Aer. COD removal of both An/Aer/An – A and An/Aer/An – B was 70%, while it was 50% and 66% for single MAD and Ana/Aer respectively. In the aerobic reactors of Ana/Aer and An/Aer/An - B, nitrification and denitrification with removal of nitrogen was observed. The An/Aer/An – B system had more ammonia and TKN removal (70%) than Ana/Aer (64%). The effluent from each stage was analyzed for dewatering ability, cake solid concentration and odor production potential. Compared with a single Ana/Aer system, the extra anaerobic step in An/Aer/An – A and – B reduced polysaccharides in the effluent. The Ana/Aer system released less protein than the conventional MAD system and the addition of the second anaerobic step - especially with system An/Aer/An – B (discharge from aerobic reactor) - greatly reduced protein, resulting in improved dewaterability and less polymer demand. An/Aer/An (both of the options: A and B) had lower CST than single MAD (both 15d and 20d SRT) and Ana/Aer. Compared to Ana/Aer, a reduction of 52% for An/Aer/An – A and 20% for An/Aer/An – B in polymer dose requirement was observed, indicating improved dewatering characteristics. The An/Aer/An – B has higher biosolid cake concentration than MAD or Ana/Aer. The results showed that An/Aer/An (both options: A and B) biosolid had lower odor generation potential than single MAD (15d and 20d SRT) or Ana/Aer. Of all the stages,the An/Aer/An – A and – B system, generated odor which peaked at shorter time and lasted for shorter duration of time. / Master of Science
413

Effects of Thermal Hydrolysis Pre-Treatment on Anaerobic Digestion of Sludge

Bishnoi, Pallavi 14 September 2012 (has links)
The increased demand for advanced techniques in anaerobic digestion over the last few years has led to the employment of various pre-treatment methods prior to anaerobic digestion to increase gas production. These pre-treatment methods alter the physical and chemical properties of sludge in order to make it more readily degradable by anaerobic digestion. The thermal hydrolysis process has been used in several treatment plants around the world, but none currently operate in the US. Thermal hydrolysis causes cell walls to rupture under the effect of high temperature and high pressure and results in highly solubilized product which is readily biodegradable. The performance of the process was evaluated for a treatment plant located in Dallas, TX. The performance assessment was based on various characteristics including pH, solids removal, COD removal and gas production. The study was conducted in two phases to investigate the effect of change in mesophilic temperature (37°C and 42°C) and the effect of solids retention time (SRT) (15 days and 20 days). Thermally hydrolyzed combined (1:1) primary and waste activated sludge was fed to a Thermal Hydrolysis (TH) anaerobic digester and its performance was compared to a conventional mesophilic anaerobic digester receiving non pre-treated sludge. The thermal hydrolysis pre-treatment was found to be more effective as compared to the conventional anaerobic digester. The efficiency of the process varied slightly with increase in temperature but the change in SRT was seen to have a greater impact on the digester's performance. The pre-treatment technique was observed to deliver the best results at a 20 day SRT. / Master of Science
414

Effect of sugar waste, surfactant waste and paint waste on the degradation of anaerobic bioreactor landfill components

Karatt Vellatt, Vijesh 25 June 2007 (has links)
Anaerobic bioreactor landfills are the landfills with an increased moisture content in order to achieve a better biodegradation. Many Bioreactor landfills accept outside liquid wastes to achieve a higher moisture content . But the effect of these wastes on the degradation of landfill components is not known. In this study, the effect of sugar waste, surfactant waste and paint waste on the degradation of landfill components was investigated. Sugar waste, surfactant waste and paint wastes in different concentrations were added to the combination of paper, cardboard, office paper and plastic with a total moisture content of 70%. The samples were incubated, sampled and analytical parameters analyzed. Sugar waste having a COD of 250,000 mg/L in a concentration of even 5% of the total weight was found inhibitive due to a drop in pH and accumulation of volatile fatty acids. Reactors with surfactant concentrations ranging from 50 mg/L to 500 mg/L showed that a higher concentration of 500 mg/L or above may be inhibitive in nature and the inhibition increases with increase in the concentration of surfactant. However, paint waste with a concentration of even 7.5% highly inhibited the degradation in the reactors. This could possibly be because of some toxicity. / Master of Science
415

Microwave-based Pretreatment, Pathogen Fate and Microbial Population in a Dairy Manure Treatment System

Jin, Ying 12 January 2011 (has links)
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while one of the limitations to struvite precipitation is the availability of orthophosphate. The aim of this work was to study the use of microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H₂SO₄, or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and side reactions. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium reacts with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147°C and 25.3 min for methane production, and 135°C and 26 min for orthophosphate release, respectively. Applying manure or slurry directly to the land can contribute to pathogen contamination of land, freshwater and groundwater. Thus it is important to study the fate of pathogens in diary manure anaerobic digestion systems. The goal of the project was to establish a molecular based quantitative method for pathogen identification and quantification, compare the molecular based method with culture based method and study pathogen fate in dairy manure and different anaerobic digesters. Result showed that molecular based method detected more E.coli than the culture based method with less variability. Thermophilic anaerobic digestion can achieve more than 95% pathogen removal rate while mesophilic anaerobic digester had increased E.coli number than fresh manure, indicating temperature is a key factor for pathogen removal. In general, the overall goal of the study is to develop an integrated dairy manure treatment system. The microwave based pretreatment enhanced the subsequent biogas production and struvite precipitation, and the molecular tool based method provided a more precise and faster way to study the pathogen fate in various anaerobic digestions. / Ph. D.
416

The Effect of Temperature on Lignin Degradation in Municipal Solid Waste

Miroshnikova, Olga 20 November 2006 (has links)
Paper and paperboard are the major constituents found in US landfills. Typically paper consists of 79% to 98% of lignocellulose which is considered to be the most abundant source of natural carbon on earth. Lignocellulose decomposition depends on the association of biodegradable cellulose and hemicellulose with lignin. Lignin is a recalcitrant material which hinders cellulose degradation in conventional landfills. Because of this property of lignin cellulose to lignin ratio (C/L) is a common landfill stabilization parameter. Refuse degradation in landfills is a microbiological process and is highly dependent on temperature, moisture, and pH. Bioreactor landfills are designed to enhance biodegradation of refuse by providing favorable conditions for microorganisms. Effect of elevated temperature and moisture on possibility of lignin degradation is studied in this work. Synthetic and newspaper lignin were preheated and then inoculated with anaerobically digested sludge. Newspaper in distilled water exposed to 95°C for 48 hours released 8 times more of solubilized lignin then non preheated newspaper. Moreover lignin monomers were detected as a result of 95°C pretreatment indicating the positive effect of high temperature on the providing lignin in more bioavailable form for microbes. Digested sludge inocula was found to be capable of lignin monomers degradation as well as low but significant mineralization of synthetic lignin with approximately 6% of carbon originated from lignin mineralized into methane and carbon dioxide. An exponentially increasing trend for lignin monomers solubilization as a function of temperature was observed for three types of substrate, synthetic lignin, cardboard, and newspaper with the highest rate of solubilization for newspaper. Results of this study suggest that some lignin degradation can occur at conditions typical for bioreactor landfills. / Master of Science
417

The Influence of Water Chemistry on H2 Production and Uptake during Anaerobic Iron Corrosion

Sun, Yue 10 December 2001 (has links)
Iron corrosion is the most important economic and aesthetic problem facing utilities. In the water distribution system, problems caused by iron corrosion include "red water", scale buildup, and pipe failures. It is necessary to improve our mechanistic understanding of anaerobic iron corrosion in order to better address these concerns. Experiments were conducted to investigate the effect of soluble constituents (Fe2+, PO43-, and NH4+) on H2 evolution during anaerobic iron corrosion. At pH 7.0 when sulfide was absent, variable Fe2+ did not have much influence on H2 release rates, whereas PO43- and NH4+ promoted H2 evolution. If present, soluble sulfide controlled H2 release rates in the solutions with Fe2+ or PO43-; however, NH4+ and S2- combined to inhibit H2 release. A simplistic empirical model was developed that fit data on corrosion rates from previous researchers studying effects of sulfate-reducing bacteria (SRB) on iron corrosion. As a whole, the experimental data and the model results support the notion that water quality controls iron corrosion rates in the presence of SRB. The practical relevance of previous research is somewhat in doubt given the atypical levels of nutrients used in relation to those actually present in water and wastewater. A second phase of research was aimed at exploring the equilibrium and kinetic aspects of iron corrosion in the presence of phosphate. The hypothesis that anaerobic iron corrosion is influenced by low pressure H2 (<1 atm) buildup was examined. At pH 2.75 and pH 7.0 in the presence of 100 mg/L P-PO43-, variations in H2 release were measured under different circumstances. Addition of PO43- formed a protective film, possibly vivianite Fe3(PO4)2, on the iron surface that eventually stopped H2 release. However, results were consistent with the idea that corrosion is an irreversible process that is relatively insensitive to low level H2 (<1 atm). Possible alternative explanations were provided to reconcile the past research data that purportedly demonstrated that removal of H2 increased corrosion rates. A reaction that caused "decay" of H2 in the presence of high phosphate was discovered that can not be readily explained. / Master of Science
418

Treatment of clam-processing wastewater using upflow anaerobic sludge blanket (UASB) technology

Tisinger, Jessi Lind 24 October 2009 (has links)
The Upflow Anaerobic Sludge Bed reactor (UASB) has been used successfully by the food processing, pulp and paper and municipal wastewater industries. High organic strength wastewater, limited space, extended down times and sludge handling and disposal have been critical factors in waste treatment system selection. This study investigated the performance of a laboratory-scale UASB reactor for treating clam-processing wastewater. Virginia state effluent regulations for BOD₅:TSS ranged from 0:0 to 90:90 to as high as 500:500 depending on the facility location. It was found that at a volumetric organic loading rate of 13.8 g COD/L/d the BOD₅ removal efficiency averaged 87% and TSS removal efficiency averaged 83%. The average effluent values for BOD₅ and TSS were 200 ppm and 90ppm, respectively. The conversion efficiency of COD to methane gas was 81%. At an organic loading rate of 4.8 g COD/L/d the effluent values averaged 77 and 66 mg/L for BOD₅ and TSS, respectively. Methane production was inhibited at Na⁺ concentrations above 5,000 ppm in batch experiments. At Na⁺ concentrations above 12,500 ppm inhibition was essentially 100%. Nutrient enrichment did not affect methane production. / Master of Science
419

Effect of various dissolved species on anaerobic iron corrosion

Lee, Changmin 22 December 2004 (has links)
Iron corrosion is an extremely complicated process because numerous factors such as pH, DO, temperature, inhibitor, and other various constituents in water can exert a controlling influence. The economic importance of problems that are caused by corrosion has been recognized. Therefore, the necessity of better understanding corrosion phenomenon is apparent. The effect of phosphorus, especially in oxidation states different than phosphate (+V) (e.g., PO3-3, PO2-3 and PH3 gas), on anaerobic iron corrosion was examined. Tests were conducted at pH 3, 7, and 10- 11 in a solution of 10-3 M NaCl. There was not a significant catalytic effect of phosphorus species on anaerobic iron corrosion. Higher levels of PH3 did markedly increase H2 evolution, consistent with observations of other researchers, but it is possibly due to oxidation of PH3 by iron surfaces with production of H2. Various constituents were also tested for iron corrosion in anaerobic solution [Al3+ (soluble), Al(OH)3, Cu2+, Si(OH)4, Boron, NOM, and sulfide] at pH pH 3, 7, and 10-11. None of these appeared to inhibit corrosion compared to a control. At pH 7, soluble Al3+ and Cu2+ in solution led to much higher production of H2 relative to a control. Phosphorus species had little impact on iron corrosion rates in the presence of sulfides (198 mg/L as S2-). In much of the research, recovery of H2 in the headspace was much lower than was predicated based on classic equations. This implies that some other, and as yet unappreciated, reactions are occurring in this system. However, in other instances the recovery of hydrogen was consistent with classical theory. Future work should examine the circumstances in which agreements and disagreements with classic theory occur. / Master of Science
420

Biopolymer and Cation Release in Aerobic and Anaerobic Digestion and the Consequent Impact on Sludge Dewatering and Conditioning Properties

Rust, Mary Elizabeth 07 September 1998 (has links)
Sludge dewatering and chemical conditioning requirements were examined from the perspective of biopolymer and cation release from activated sludge flocs. Both aerobic and anaerobic digestion processes were considered from two different activated sludge sources at a temperature of 20° C. Polymer demand and specific resistance to filtration increased with an increase in total soluble biopolymer concentration for all temperature ranges. In anaerobic digestion, the protein release was three times greater than the polysaccharide release. Conversely, aerobic digestion of the same sludge resulted in a greater release of polysaccharides than proteins. Polymer conditioning requirements in the anaerobic digestors were an order of magnitude higher than in the aerobic digestors; proteins were considered to be the biopolymer fraction responsible for the high polymer conditioning requirements and poor dewatering properties. Biopolymer is released to the supernatant as colloids bound by divalent cations. Peptidase and glucosidase activity were used to monitor enzymatic activity relative to biopolymer release and degradation. The reasons for the increases and decreases in hydrolase activity are unknown. / Master of Science

Page generated in 0.199 seconds