• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De l'algorithmique à l'arithmétique via le calcul formel

Zimmermann, Paul 26 November 2001 (has links) (PDF)
Ce mémoire présente mes travaux de recherche de 1988 à 2001, travaux effectués d'abord à l'INRIA Rocquencourt au sein du projet Algo (1988 à 1992), puis à l'INRIA Lorraine et au LORIA dans les projets Euréca (1993 à 1997), PolKA (1998 à 2000), et Spaces (2001). Au niveau thématique, on peut distinguer grosso modo trois phases : une première période allant de 1988 à 1992 où j'ai surtout travaillé sur l'analyse d'algorithmes et la génération aléatoire, une seconde période de 1993 à 1997 où je me suis investi dans le calcul formel et les algorithmes sous-jacents, enfin une troisième période depuis 1998 où je me suis intéressé aux problèmes d'arithmétique exacte en précision arbitraire.
2

Contributions to Convergence Analysis of Noisy Optimization Algorithms / Contributions à l'Analyse de Convergence d'Algorithmes d'Optimisation Bruitée

Astete morales, Sandra 05 October 2016 (has links)
Cette thèse montre des contributions à l'analyse d'algorithmes pour l'optimisation de fonctions bruitées. Les taux de convergences (regret simple et regret cumulatif) sont analysés pour les algorithmes de recherche linéaire ainsi que pour les algorithmes de recherche aléatoires. Nous prouvons que les algorithmes basé sur la matrice hessienne peuvent atteindre le même résultat que certaines algorithmes optimaux, lorsque les paramètres sont bien choisis. De plus, nous analysons l'ordre de convergence des stratégies évolutionnistes pour des fonctions bruitées. Nous déduisons une convergence log-log. Nous prouvons aussi une borne basse pour le taux de convergence de stratégies évolutionnistes. Nous étendons le travail effectué sur les mécanismes de réévaluations en les appliquant au cas discret. Finalement, nous analysons la mesure de performance en elle-même et prouvons que l'utilisation d'une mauvaise mesure de performance peut mener à des résultats trompeurs lorsque différentes méthodes d'optimisation sont évaluées. / This thesis exposes contributions to the analysis of algorithms for noisy functions. It exposes convergence rates for linesearch algorithms as well as for random search algorithms. We prove in terms of Simple Regret and Cumulative Regret that a Hessian based algorithm can reach the same results as some optimal algorithms in the literature, when parameters are tuned correctly. On the other hand we analyse the convergence order of Evolution Strategies when solving noisy functions. We deduce log-log convergence. We also give a lower bound for the convergence rate of the Evolution Strategies. We extend the work on revaluation by applying it to a discrete settings. Finally we analyse the performance measure itself and prove that the use of an erroneus performance measure can lead to misleading results on the evaluation of different methods.
3

Récurrences mahlériennes, suites automatiques, études asymptotiques

Dumas, Philippe 02 September 1993 (has links) (PDF)
L'objet de cette thèse est l'étude d'une classe de séries entières solutions de certaines équations fonctionnelles, dites mahlériennes. Ces séries interviennent en combinatoire avec des problèmes de comptage de mots et en analyse d'algorithmes où elles sont liées aux récurrences diviser pour régner. La résolution des équations mahlériennes est fondée sur les propriétés des fractions rationnelles vis à vis de l'opérateur fondamental, analogue de la dérivation pour les équations différentielles, et sur l'arithmétique des opérateurs sous-jacents à ces équations. Les méthodes décrites fournissent à la fois des procédés effectifs de calcul et des résultats qualitatifs sur les propriétés de clôture de cette classe et, dans le cas complexe, sur les propriétés analytiques des solutions. Une sous-classe importante de séries mahlériennes est fournie par les séries B-régulières, généralisation des séries B-automatiques. Elles sont la traduction, via la numération en base B, des séries rationnelles en indéterminées non commutatives de la théorie des langages formels et héritent de leurs propriétés. On peut par exemple définir les notions de représentation linéaire, de rang et de matrice de Hankel. Sous certaines conditions simples, une série mahlérienne est B-régulière ; en particulier la plupart des récurrences diviser pour régner fournissent des séries B-régulières. L'analyse asymptotique des coefficients des séries mahlériennes complexes sàppuie sur une classification qui met en valeur l'importance des séries B-régulières, sur des techniques d'algèbre linéaire et sur des méthodes de théorie analytique des nombres. Les résultats obtenus permettent de traiter les exemples rencontrés dans la pratique. Ils montrent pour les séries B-régulières un lien entre le comportement asymptotique des coefficients et le spectre des représentations linéaires et dans beaucoup de cas un phénomène de périodicité en échelle logarithmique.

Page generated in 0.0605 seconds